- torque → statics
 - angular momentum I
 - acceleration $\dot{\alpha}$
- harmonic oscillators
 (Young's modulus)
Statics: Forces sum to zero

Moments sum to zero.

What are all the forces acting?
mechanical advantage
Stable: $|T_2| = 1 \text{mN}\cdot \text{g}$

Torque: $T_2 = \phi \cdot 1 \text{mN}\cdot \text{g}$

Ref. pt.: F_2 (put it here, b/c we don't know F_2)
\[T_2 L + m_b g \frac{L}{2} - T_1 L \sin \theta = 0 \] (torque)

\[F_x = -T_1 \cos \theta + F_{px} = 0 \] (x-component of the unknown force)

\[F_y = -m_b g - T_2 + T_1 \sin \theta + F_{py} = 0 \]

\[T_2 - m_s g = 0 \] (sign is static too!)
\[T_2 = mg \checkmark \]

\[T_1 \tan \theta = mg \frac{1}{2} + \frac{1}{2} m_b g \]

\[T_1 = mg \frac{1}{2} + \frac{1}{2} m_b g \]

\[F_{px} = T_1 \cos \theta = \left[mg \frac{1}{2} + \frac{1}{2} m_b g \right] \frac{\cos \theta}{\sin \theta} \]

\[F_{py}: \frac{1}{2} m_b g - mg + \left(mg + \frac{1}{2} m_b g \right) + F_{py} = 0 \]

\[F_{py} = \frac{1}{2} m_b g \]