Homework Set #4 (Due Thursday, December 14th)

1) Consider the following linear PDE (with a, b constants and n integer),

$$
\frac{\partial f}{\partial t} + b x \frac{\partial f}{\partial x} = a x^n.
$$

a) Solve Eq. (1) by the method of characteristics. Express your solution in terms of the initial condition $f(x, t = 0) = f_0(x)$.

b) Plot your solution as a function of x at different times $t = 0, 1, 2$, for $f_0(x) = \exp(-(x-1)^2)$, $b = n = 1$. Consider two cases, $a = 0$ and $a = 0.05$. Explain what you see in the plots.

2) Consider the KdV equation in one dimension,

$$
\frac{\partial f}{\partial t} + f \frac{\partial f}{\partial x} + \alpha \frac{\partial^3 f}{\partial x^3} = 0,
$$

where $-L \leq x \leq L$ and periodic boundary conditions are imposed, the initial condition corresponds to a small amplitude cosine wave, $f(x, t = 0) = (1/8) \cos(\pi x/L)$.

a) Solve the KdV equation using the Galerkin method, as discussed in class. In doing so, you convert the PDE into a system of coupled ODE’s which can be solved by your Runge-Kutta solver. Use plane waves as modes to expand your solution, including up to $M = 20$ modes, and evolving from $t = 0$ to $t = 200$. Use $\alpha = 1$ for your numerical solution, and the standard inner product.

b) Make plots of $f(x, t)$ as a function of x for times $t = 0, 20, 40, 80, 120, 200$.

c) Calculate and make a plot of the power spectrum for the timesteps in b).

d) Explain what you see in the plots in b) and c). What would happen if we decrease α?

3) Consider the Ising model in a square lattice in two dimensions of size $L = 50$ with free boundary conditions. Normalize the maximum magnetization to unity (i.e. all spins up).
a) Use the Metropolis algorithm to find the equilibrium state at a given temperature, choosing the number of Monte Carlo steps per spin $t_n = n/L^2$ such that a “cold” initial condition (e.g. all spins up) and a “hot” initial condition (all spins random) gives approximately the same magnetization after n flip proposals.

b) Calculate the magnetization as a function of temperature and make a plot of it, comparing with the analytic prediction of the critical temperature $k_B T_c = 2.269J$. At each temperature calculate the magnetization by averaging over 5 seeds of initial “hot” conditions, each of them evolved through t_n steps of the chain.