Homework 2

Problem 1.
Centripetal acceleration is given by \(a = \frac{v^2}{R} = \omega^2 R \), where \(v \) is velocity, \(R \) is radius of rotation, \(\omega = \frac{v}{R} \) is angular velocity defined as change of angle in unit time (very useful for rotation problems). The Earth makes one rotation (angle \(2\pi \)) in 24 hours, that means \(\omega = \frac{2\pi}{24} \) hours\(^{-1} = \frac{2\pi}{24}/3600 \) s\(^{-1} \). Radius of the Earth is \(R = 6370 \ km \approx 6.4 \times 10^5 \ m \). So, the centripetal acceleration at equator is \(a = \omega^2 R \approx 0.034 \ m/s^2 = 3.4 \times 10^{-3} g \), where \(g = 9.8 \ m/s^2 \).

Problem 2.
see graphs.

Problem 3.
(i) Constant acceleration \(x_0 = 0 \) and \(v_0 = 0 \), so \(x = at^2/2 \). (ii) Constant speed \(v_a = at_a \). Total distance \(x_f = at_a^2/2 + v_a(t_f - t_a) = at_a^2/2 + at_a(t_f - t_a) = at_a(t_f - t_a) - at_a^2/2 \). There are 2 cases: (a) \(t_a < t_{1/2} \), (b) \(t_a > t_{1/2} \).

(a) \(t_a < t_{1/2} \) - half of the distance is \(x_f^2/2 = at_a^2/2 + v_a(t_{1/2} - t_a) \) and for total \(x_f = at_a^2/2 + v_a(t_f - t_a) \). Substituting \(v_a = at_a \) we get

\[
\begin{align*}
 x_f &= at_a(t_f - t_a) - at_a^2/2 = at_a(t_f - t_a)/2, \\
 x_f/2 &= at_a(t_{1/2} - t_a)/2 = at_a(t_{1/2} - t_a)/2, \\
 x_f/2 &= at_a(t_{1/2} - t_a)/2 = at_a(t_{1/2} - t_a)/2,
\end{align*}
\]

now let's divide one equation by the other

\[
2 = \frac{at_a(t_f - t_a/2)}{at_a(t_{1/2} - t_a/2)} = \frac{t_f - t_a/2}{t_{1/2} - t_a/2}.
\]

From here we get for time of accelerated motion \(t_a = 2(2t_{1/2} - t_f) = 1.84 \) s and correspondingly for acceleration \(a = 5.9 \ m/s^2 \).

(b) \(t_a > t_{1/2} \) - half of the distance is \(x_f^2/2 = at_a^2/2 \) and for total \(x_f = at_a^2/2 + v_a(t_f - t_a) \). From the first equation we get acceleration. From the second we find time \(t_a \) (by solving quadratic equation), but both solution are out of range: the first one is less then \(t_{1/2} \), the second is bigger then \(t_f \). One could see this by making graph \(v \) vs. \(t \).
Figure 1: Problem 2.