Big Bang Nucleosynthesis

B_{\gamma} = Z m_p + (A-Z)m_n

Deuterium \(\text{^2H} \)
\[2.22 \text{ MeV} \]

Tritium \(\text{^3H} \)
\[6.92 \text{ MeV} \]

Helium-3 \(\text{^3He} \)
\[7.42 \text{ MeV} \]

Helium-4 \(\text{^4He} \)
\[28.3 \text{ MeV} \]

Carbon-12 \(\text{^{12}C} \)
\[92.2 \text{ MeV} \]

\(A = 2+4N \)

\[Z = 1, 2 \]

Simple energy considerations would suggest that these nuclei will be produced when \(T \approx 1-30 \text{ MeV} \); however, this is not the case because the baryon to photon ratio is so small \(n_B/n_\gamma \approx 10^{-10} \). That there are a lot of photons around:

\[n_\gamma = 2.68 \times 10^{-8} \text{ s}^{-2} \text{cm}^{-4} \]

\(n_B/n_\gamma \approx 10^{-5} \)

In E\(\gamma \) (assumed reaction are fast enough), elements with \(A \) will have abundance:

\[n_A = n_\gamma \left(\frac{m_{\gamma} T}{2\pi} \right)^{3/2} \exp \left[-\frac{m_{\gamma} + m_A}{T} \right] \]

The \(n_p \) abundance:

\[n_p \sim 2 \left(\frac{m_{\gamma} T}{2\pi} \right)^{3/2} \exp \left[-\frac{m_{\gamma} + m_p}{T} \right] \]

\[n_n \sim 2 \left(\frac{m_{\gamma} T}{2\pi} \right)^{3/2} \exp \left[-\frac{m_{\gamma} + m_n}{T} \right] \]

In chemical equilibrium, the chemical potentials are related as:

\[\mu_A = \mu_p + (A-Z)\mu_n \]

\[e^{\mu_A/T} = e^{[\mu_p + (A-Z)\mu_n]/T} = n_p \frac{Z}{n} n_{A-Z} \left(\frac{2\pi}{m_{\gamma} T} \right)^{3/2} 2^A e^{\frac{Z m_p + (A-Z) m_n}{T}} \]

\[n_A = n_p A^{3/2} \left(\frac{2\pi}{m_{\gamma} T} \right)^{3/2} \frac{Z}{A} n_{A-Z} \exp \left[\frac{Z m_p + (A-Z) m_n}{T} \right] \]

Since particle number densities decrease as \(A^{-3} \) (for const. number per volume), it is useful to normalize by the total baryon density
look at mass fraction:

\[X_A = \frac{A \eta_A}{n_B} \]

where \(n_B \) is baryon density \(\sum_i \eta_i = 1 \)

\[\eta_p = \eta_B (X_A / A) = \eta \eta (X_A / A) \]
\[\eta_p = \eta_B \chi_p = \eta \eta \chi_p \]
\[\eta_n = \eta_B \chi_n = \eta \eta \chi_n \]

\[\eta \approx 2.2 (3) \times 10^{-7} \] \(T_0^3 \)

\[\eta \approx 2.68 \times 10^{-7} \] \(B_0 h^2 \) i.e. present cosmological value

\[X_A = \left[9 \left(1 + \frac{3}{2} (34.5)^{1/2} \right) - 1 \right]^{-1} \eta^{-1} \]
\[\eta \approx 2.68 \times 10^{-7} \]

\[X_A = X_p \approx X_n \approx \exp \left(\frac{B_0}{T_0} \right) \]

\[T_{1/2} \approx \frac{B_0}{(A+1)} \ln (\eta^{-1}) + \frac{3}{2} \ln (T_0) \]

So, \(\eta < 1 \) need \(T \gtrsim B_0 \) to have a reasonable large abundance.

An estimate we can get being \(\chi_p \approx \chi_n \) => \(X_A \approx 1 \) when

\[T_{1/2} \approx \frac{B_0}{(A+1)} \ln (\eta^{-1}) + \frac{3}{2} \ln (T_0) \]

\[\begin{align*}
 ^2 \text{H} & : 0.07 \text{ MeV} \\
 ^3 \text{He} & : 0.11 \text{ MeV} \\
 ^4 \text{He} & : 0.28 \text{ MeV} \\
 ^{12} \text{C} & : 0.25 \text{ MeV}
\end{align*} \]

So, significant production only happens at much lower energies.

Thus far, we assumed equilibrium.

There are 2 crucial general type of reactions that determine the abundance of elements:

i) \(n / p \) determined by weak interaction rate

ii) nuclear reaction rate
we have to check when these reactions are in equilibrium.

i) p-n reaction by:

\[
\begin{align*}
\begin{cases}
\nu \rightarrow p + e^- + \bar{\nu} \\

\nu + n \rightarrow p + e^-
\end{cases}
\end{align*}
\]

\[e^+ + n \rightarrow p + \bar{\nu}\]

When things are in EQ (T >> H), \(\mu_n + \mu_\nu = \mu_p + \mu_e \) and then:

\[
\left(\frac{n}{p} \right)_{eq} \approx \left(\frac{n}{p} \right)_{eq} = \left(\frac{\rho_e}{\lambda_p} \right)_{eq} = \exp \left[-\frac{Q}{T} + \frac{\mu_e - \mu_\nu}{T} \right] \approx \exp \left[-\frac{Q}{T} \right]
\]

recall \(\alpha \approx 1.3 \text{MeV} \), so as temperature drops below this, protons are favoured over neutrons.

To see how long this ratio is maintained as universe cools down, need to calculate \(T \) for the interactions above (using weak interactions) - The result is that \((T_{1/2} \text{MeV}) \)

\[
\frac{T}{H} \sim \left(\frac{T}{0.8 \text{MeV}} \right)^3
\]

so at \(T > 0.8 \text{MeV} \) \(\frac{n}{p} = (\frac{\rho}{p})_{eq} \), at \(T < 1 \text{MeV} \) \(\frac{n}{p} \approx (\frac{\rho}{p})_{eq} \).

When \(T \) drops below 0.8, the neutron to proton ratio "freezes out" (decays), and stays constant - however, since neutron is unstable, it actually does not stay exactly constant but decays with half life \(\approx 10 \) minutes. So, when \(BBN \) starts, there will be a lot less neutrons than from \((n/p)_{eq} \).
ii) The nuclear reaction rates can be shown to be in EQ. \(T > 1 \text{ MeV} \) at temperatures of 1 MeV, so at this \(T \), \(n, p, \delta^5, \nu^5, \psi^5 \) are in EQ at the same temperature. But as mentioned before at \(T \approx 1 \text{ MeV} \) the \(X_p \) are very small.

As \(T \) drops below \(T \approx 1 \text{ MeV} \), many interesting things happen.

1) \(\nu \) decouples @ \(T \approx 1 \text{ MeV} \)
2) \(\Delta \), etc. annihilate and transition entropy to \(\delta^5 \), at \(T \approx 0.5 \text{ MeV} \)
3) \(n \approx 0.8 \text{ MeV} \), \(X_p \) freeze-out with a value

\[
\left(\frac{N}{P} \right)_{\text{freeze-out}} = \exp \left(-\frac{q}{T_F} \right) = \exp \left(-\frac{1.3}{0.8} \right) \approx \frac{1}{6}
\]

at this time, nuclear reactions are still in EQ, but abundances are small,

\[
X_n \approx \frac{1}{7} \\
X_P \approx \frac{6}{7}
\]

Deuterium \(X_2 \approx 10^{-12} \)

Tritium \(X_3 \approx 10^{-23} \)

\(^{4}He \) \(\delta_4 \approx 10^{-23} \)

- When \(T \) drops to \(T \approx 0.3 \text{--} 0.1 \text{ MeV} \) \((t = 1 \text{--} 3 \text{ minutes}) \) \(\text{NUC} \) takes place

Some neutrinos decay by decay

\[
\exp \left(-\frac{3 \text{min}}{10 \text{min}} \right) \approx 0.8 \\
\left(\frac{N}{P} \right)_{\text{NUC}} \approx \frac{1}{6} \times 0.8 \approx \frac{1}{7}
\]
[recall the EQ value would be \((\frac{n}{p})_{eq} = \exp(-\frac{1.3}{0.3}) \approx \frac{1}{76} \)]

at \(T \approx 0.3 \text{ MeV} \) X-ray bremsstrahlung of order unity; however, the fastest way to create \(^4\text{He}\) is through deuteronium:

\[
\begin{align*}
2\text{H} + 2\text{H} & \leftrightarrow \text{He} + p \\
2\text{H} + 2\text{H} & \leftrightarrow \text{He} + n \\
3\text{H} + \text{He} & \leftrightarrow \text{He} + \text{He} + n \\
3\text{He} + \text{He} & \leftrightarrow \text{He} + \text{He} + p
\end{align*}
\]

Since deuteronium is formed by

\[n + p \leftrightarrow \text{He} + \gamma \]

it has actually to wait until \(T \approx 0.1 \text{ MeV} \) when photodissociation of \(\text{He} \) by \(\gamma \)'s is low enough (recall \(B_{\gamma\gamma} \approx 2.2 \text{ MeV} \)); again, there are lots of photons around.

\[
\text{Similarly, EQ value for } ^3\text{He} \text{ are very small at } T \approx 0.3 \text{ MeV}
\]

When \(T \approx 0.1 \text{ MeV} \), \(^2\text{H}, ^3\text{He} \) lead to \(^4\text{He}\), and essentially all reactions end up in the most bound state, \(^4\text{He}\) (this is only an approx., but close). Then we can estimate the mean fraction of \(^4\text{He}\) by:

\[
X_{^4\text{He}} = \frac{4}{n_n} = \frac{4}{n_n/2} = \frac{2(n/p)_{\text{Nuc}}}{1 + (n/p)_{\text{Nuc}}} \approx \frac{1}{4}
\]

As reactions proceed, \(^2\text{H}, ^3\text{He}\) get depleted, and since \(T \approx 0.1 \text{ MeV} \), and \(n/n_p \) rates go down and freeze out,
leaving residual fraction of deuterium and 3He. Since $N_\alpha \propto X_\alpha \eta^{3/2}$, these abundances depend on η sensitively. On the other hand, ^4He depends mostly on $(O/P)_{\text{nuc.}} - (O/P)_{\text{Thallium}}$.

- What happens with heavier elements? They are suppressed:

 i) By the time deuterium is available to form ^3He, the Amontons barrier becomes large compared to energy ($\text{depends on } \frac{\sqrt[1/3]{A+2}}{4\pi^2} \frac{T^{-1/3}}{(\text{TeV})}$; $A = \frac{A_1 A_2}{A_3}$)

 ii) There are no tightly bound elements with $A = 5, 8$

 iii) The density is low enough that the triple α reaction $^3\text{He} \rightarrow ^{12}\text{C}$ is strongly suppressed (this works in stars though)

 iv) Some traces of ^7Li and ^7Be are produced

$$\frac{^7\text{Li}}{\text{H}} \sim 10^{-9} - 10^{-10}, \quad \frac{^7\text{Be}}{\text{H}} \sim 10^{-11}$$

- The residual fraction of deuterium and ^3He is D, $^3\text{He}/\text{H} \sim 10^{-4}$

[Show transparency with results of SN36L]

$$\eta \sim (3-10^2) \times 10^{-10} \Rightarrow \sigma_{\text{Bb}}^2 \approx 0.02 \pm 0.01$$