Eigenvectors and Eigenvectors

As we discussed for rotations, one can think of matrices as giving a linear transformation of a vector \mathbf{F} to \mathbf{F}', according to:

$$\mathbf{F}' = A \cdot \mathbf{F}$$

As we shall see in a moment, it is very useful to consider whether there are vectors that are "essentially" invariant under such a transformation, i.e.

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$ \hspace{1cm} (1)$$

Where the action of the matrix A on \mathbf{v} is to give back the same vector times a constant λ - such vectors are called eigenvectors and the constant λ eigenvalues. We will explore the physical meaning of these objects below.

To find a pair \mathbf{v}, λ such that (1) implies,

$$B \cdot \mathbf{v} = (A - \lambda 1) \cdot \mathbf{v} = 0$$

We can now consider this a simple system of linear equations which is homogeneous. If the matrix B were invertible, the only solutions would be the trivial $\mathbf{v} = B^{-1} \mathbf{0} = \mathbf{0}$, so the requirement is that B be singular, that is:

$$\det B = \det (A - \lambda 1) = 0$$
This is known as the characteristic equation (recall homework 1). For an \(n \times n \) matrix, this has \(n \) solutions \(\lambda_n \) which constitute the set of eigenvalues. For example, take a \(2 \times 2 \) matrix:

\[
A = \begin{bmatrix} 0 & -1 \\ -3 \frac{1}{2} & 1 \frac{1}{2} \end{bmatrix}
\]

The characteristic equation is:

\[
\text{det} \begin{bmatrix} -\lambda & -1 \\ -3 \frac{1}{2} & 1 \frac{1}{2} - \lambda \end{bmatrix} = \left| \begin{array}{cc} -\lambda & -1 \\ -3 \frac{1}{2} & 1 \frac{1}{2} - \lambda \end{array} \right| = -\lambda \left(\frac{1}{2} - \lambda \right) - \frac{3}{2} = 0
\]

\[\Rightarrow \lambda^2 - \frac{1}{2} \lambda - \frac{3}{2} = 0 \Rightarrow \lambda = \frac{1}{2} \pm \sqrt{\frac{1}{4} - 4 \left(-\frac{3}{2} \right)} = \frac{1}{4} \pm \frac{1}{2} \sqrt{25} = \frac{1}{4} \pm \frac{1}{2} \frac{5}{2}
\]

\[\Rightarrow \lambda = \frac{1}{4} \pm \frac{5}{4} \Rightarrow \lambda_1 = 3 \frac{1}{2}, \quad \lambda_2 = -1
\]

The eigenvectors are found by putting this back into (1). For \(\lambda = 3 \frac{1}{2} \) we have:

\[
\begin{bmatrix} 0 & -1 \\ -3 \frac{1}{2} & 1 \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{3}{2} \begin{bmatrix} x \\ y \end{bmatrix}
\]

Which gives the system of equations:

\[
\begin{cases}
-\frac{3}{2} x + y = \frac{3}{2} y \\
-\frac{3}{2} x + \frac{3}{2} y = -\frac{3}{2} x = y
\end{cases}
\]

Notice both equations are actually the same, as it should be, i.e., if a vector \(\vec{v} \) is an eigenvector, any scalar multiple \(k \vec{v} = \vec{v'} \) is an eigenvector as well, so \(x \) and \(y \) should only be determined up to
So we have

$$\vec{v}_1 = (x, -\frac{3}{2}x) = x (1, -\frac{3}{2})$$

we can choose the overall constant x as we please, usually it is chosen so that the norm of \vec{v}_1 is unity,

$$v_1^2 = x^2 \sqrt{1^2 + (-\frac{3}{2})^2} = 1 \Rightarrow x = \frac{1}{\sqrt{1 + \frac{9}{4}}} = \sqrt{\frac{13}{4}}$$

For \vec{v}_2, we have similarly,

$$\begin{bmatrix} 0 & -1 \\ -\frac{3}{2} & 1/2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -\frac{3}{2}x + \frac{1}{2}y \end{pmatrix} \Rightarrow \begin{cases} -y = -x \\ \frac{3}{2}x + \frac{1}{2}y = -y \Rightarrow \frac{3}{2}x - \frac{3}{2}y \end{cases}$$

$$\Rightarrow \vec{v}_2 = (x, x) = x (1, 1)$$

$$v_2^2 = x^2 \sqrt{1^2 + 1^2} = 1 \Rightarrow x = \frac{1}{\sqrt{2}}$$

So the eigenvalues and eigenvectors are:

$$\begin{cases} \lambda_1 = \frac{3}{2} \\ \vec{v}_1 = \sqrt{\frac{13}{4}} (\frac{1}{2}, -\frac{3}{2}) \end{cases}$$

$$\begin{cases} \lambda_2 = -1 \\ \vec{v}_2 = \frac{1}{\sqrt{2}} (1, 1) \end{cases}$$

The special case of a (real) symmetric matrix is important. In this case, it is easy to show that the eigenvectors for eigenvalues that are different are orthogonal.

Consider two such eigenvectors, corresponding to λ_1 and λ_2,
\[\begin{align*}
A \cdot \vec{v}_1 &= \lambda_1 \vec{v}_1 \\
A \cdot \vec{v}_2 &= \lambda_2 \vec{v}_2
\end{align*} \]

To show that they are orthogonal, we take their scalar product, e.g. take a look at

\[
\bar{v}_2 \cdot (A \cdot \bar{v}_1) = (\bar{v}_2)_i (A \cdot \bar{v}_1)_i = (\bar{v}_2)_i \lambda_1 (\bar{v}_1)_i = \lambda_1 \bar{v}_2 \cdot \bar{v}_1
\]

but we can rewrite this as

\[
(A \cdot \bar{v}_1)_i = (\bar{v}_2)_i \lambda_1 (\bar{v}_1)_i = (\bar{v}_2)_i \lambda_2 (\bar{v}_1)_i = (A \cdot \bar{v}_1)_j
\]

Now, from (A) and (B) we have

\[
\lambda_1 \bar{v}_1 \cdot \bar{v}_2 = \lambda_2 \bar{v}_1 \cdot \bar{v}_2
\]

\[
\Rightarrow (\lambda_1 - \lambda_2) \bar{v}_1 \cdot \bar{v}_2 = 0 \Rightarrow \lambda_1 = \lambda_2
\]

Since eigenvectors can be normalized to unit vectors, we have that for a real symmetric matrix

\[
\forall \ v^m, v^n \ = \ \delta_{nm} \quad m, n = 1, \ldots, N
\]

for the \(n \)th eigenvector corresponding to \(\lambda_m \), and on \(n \)th for \(\lambda_n \).

The eigenvectors \(\bar{v}^m \) can be used to define the columns of a matrix \(\Psi \):

\[
\Psi = \begin{bmatrix}
\bar{v}^1 & \bar{v}^2 & \cdots & \bar{v}^m & \cdots & \bar{v}^N
\end{bmatrix}
\]

(\(N \times N \) matrix)
whose elements are $V_{ij} = V_{k}^{(i)}$

(i.e. the ith component of the jth eigenvector. It is easy to see that such a matrix is orthogonal

$V^T V = 1$

where T means transposed - we have

$(V^T V)_{ij} = (V^T)_{ik} V_{kj}$

$= V_{ki} V_{kj} = V_{k}^{(i)} V_{k}^{(j)} = \delta_{ij}. \delta_{ij} = \delta_{ij} = (1)_{ij} \check{\sqrt{}}$

As you will prove in HMK#2, problem 2, for N vectors that are orthonormal it follows the so-called completeness relation

$I = \sum_{n=1}^{N} \psi^{(n)}(x) \psi^{(n)T}(x)$

(4)

where for a vector say $\psi^{(1)} = (x_1, y_1)$ its transpose is the $\psi^{(1)T} = (x_1, y_1)$

The $n=1$ term in the above sum is then the matrix

$[x_1^2, x_1 y_1, x_1 y_1, y_1^2]$

We can multiply equation (4) by any vector \vec{p} to get

$\lambda \cdot \vec{p} = \vec{p} = \sum_{n=1}^{N} \psi^{(n)}(x) \psi^{(n)T}(x) \cdot \vec{p} = \sum_{n=1}^{N} \psi^{(n)}(x) \cdot (\psi^{(n)}(x) \cdot \vec{p})$

this is the scalar product (or inner product) $\psi^{(n)T} \cdot \vec{p}$

where we take rows of $\psi^{(n)}$ and multiply to columns of \vec{p} (only a row and column in this case). Since vectors can be thought of rows or
Then we have the remarkable result,

\[
\bar{p} = \sum_{n=1}^{N} \bar{v}^{(n)} \cdot (\bar{v}^{(n)} \cdot \bar{p})
\]

[Emphasis: an error in class]

Now we can easily find the effect of the matrix \(A \) on any vector \(\bar{p} \):

\[
A \cdot \bar{p} = \sum_{n=1}^{N} \lambda_n \bar{v}^{(n)} \cdot (\bar{v}^{(n)} \cdot \bar{p})
\]

\[
\Rightarrow A \cdot \bar{p} = \sum_{n=1}^{N} \lambda_n \bar{v}^{(n)} \cdot (\bar{v}^{(n)} \cdot \bar{p})
\]

Compare this equation to \((\#)\), only effect is to add \(\lambda_n \) factor to each term. We can rewrite this equation as

\[
A \cdot \bar{p} = \left(\sum_{n=1}^{N} \lambda_n \bar{v}^{(n)} \bar{v}^{(n)\top} \right) \cdot \bar{p}
\]

Since this is true for any \(\bar{p} \), we have that

\[
A = \sum_{n=1}^{N} \lambda_n \bar{v}^{(n)} \bar{v}^{(n)\top}
\]

We can rewrite this in components as,

\[
A_{ij} = \sum_{n=1}^{N} \lambda_n \bar{v}_i^{(n)} \bar{v}_j^{(n)}
\]

\[
= \sum_{n=1}^{N} \lambda_n \bar{v}_{in} \bar{v}_{jn} = \sum_{n=1}^{N} \lambda_n \bar{v}_{in} \bar{v}_{jn}\]

[Note: \(\bar{v}^{(n)} \bar{v}^{(m)\top} \) is column times row, so it is not a scalar product, it is a matrix product. \(\bar{v}^{(n)\top} \bar{v}^{(n)} = 1 \) is the scalar product]
\[A_{ij} = V_{ik} \Sigma_{kl} V_{lj} \]

where \(\Sigma_{kl} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \) are the elements of the diagonal matrix \(\Sigma \).

Thus, the matrix of the eigenvectors \(V \), can be used to connect the matrix \(A \), with its diagonal version \(\Sigma \). Then we can diagonalize \(A \) by multiplying by \(V^T \) and \(V \) on left and right,

\[V^T A V = \begin{bmatrix} V^T & 0 & \cdots & 0 \\ 0 & V^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & V^T \end{bmatrix} \begin{bmatrix} \Sigma & \cdots & 0 \\ \cdots & \ddots & \cdots \\ 0 & \cdots & \Sigma \end{bmatrix} = \Sigma = \text{diag}(\lambda_1, \ldots, \lambda_n) \]

What is the meaning of \(V \)? Let's multiply \(V \) times the unit vector along the first direction (say \(x \)-axis) \(\hat{e}_1 = (1, 0, \ldots, 0) \).

We have:

\[V \cdot \hat{e}_1 = \begin{bmatrix} \vec{v}^{(1)} \\ \vdots \\ \vec{v}^{(n)} \end{bmatrix} (1, 0, \ldots, 0) = \vec{v}^{(1)} \]

Similarly,

\[V \cdot \hat{e}_2 = \vec{v}^{(2)} \ldots \quad V \cdot \hat{e}_n = \vec{v}^{(n)} \]
Next, the matrix W relates the (x_1, y_1, z_1, \ldots) axes along the eigenvectors of A!

W can indeed be regarded as a rotation matrix, since it is orthogonal, with $\det W = 1$.

Thus, to diagonalize a matrix, one needs to find its eigenvectors.

NORMAL MODES

An important application of eigenvalues and eigenvectors is to find the characteristic oscillations of physical systems. We shall consider a simple example [(12.6 of Smieda)] where we have 3 masses connected by 2 springs.

The equations of motion are

\[
\begin{align*}
 m \ddot{x}_1 &= k(\gamma_2 - \gamma_1) \\
 m \ddot{x}_2 &= -k(\gamma_2 - \gamma_1) + k(\gamma_3 - \gamma_2) \\
 m \ddot{x}_3 &= -k(\gamma_3 - \gamma_2)
\end{align*}
\]

(I'm assuming that rest length for springs is $l=0$)

We look for solutions to these equations where x_i depend on time as $e^{-i\omega t}$ [i.e., $\cos \omega t$ or $\sin \omega t$, depending on initial conditions]. Then we have $\ddot{x}_i = -\omega^2 x_i$, and we can write

\[A \cdot \vec{x} = \frac{m\omega^2}{k} \vec{x} \]

where $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$ and $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

So $m\omega^2$ are eigenvalues of A!
The normal modes are the characteristic pattern of oscillations. These oscillations are found by looking for the eigenvalues of A; that is, this is so because

$$(A - \frac{m \omega^2}{k} \mathbb{1} \mathbb{1}) \mathbf{x} = 0$$

will only have non-trivial solutions for eigenvalues λ so that $\det (A - \lambda \mathbb{1}) = 0$ (where $\lambda = \frac{m \omega^2}{k}$)

$$\Rightarrow \det \begin{bmatrix} 1-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 \\ 0 & -1 & 1-\lambda \end{bmatrix} = (1-\lambda) [(2-\lambda)(1-\lambda)-1] + 1 (\lambda-1) = 0$$

$$\Rightarrow (\lambda^2 - 3\lambda + 1)(\lambda - 1) = \lambda(\lambda - 3)(\lambda - 1) = 0 \Rightarrow \lambda = \left\{ \frac{1}{3}, 1 \right\}$$

Therefore, the eigen frequencies are $\omega_1 = 0$, $\omega_2 = \sqrt{\frac{k}{m}}$, $\omega_3 = \sqrt{\frac{3k}{m}}$

At these frequencies, the system will oscillate freely. Let's figure out the eigen vectors, which give the displacement pattern for each eigenfrequency. They are [126.1d in Snider]

$$\mathbf{v}^{(1)} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}^{(2)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{v}^{(3)} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

as you can easily derive (try it!). So, we see that for $\omega_1 = 0$, we have a displacement pattern for each mass.

$$\uparrow \rightarrow \uparrow \rightarrow \uparrow \rightarrow$$

So, the 3 masses move in the same direction with the same
amplitude, there is no oscillation at all! Only the center of mass moves. That's why \(w = 0 \), independent of \(k/m \).

For \(w_2 = \sqrt{1/v_m} \) we have the pattern

\[
\begin{array}{ccc}
1 & \rightarrow & 0 \\
\uparrow & & \downarrow \\
0 & \rightarrow & 0 \\
\uparrow & & \downarrow \\
0 & \rightarrow & 1 \\
\end{array}
\]

Note that the center of mass doesn't move. The masses at the ends move only, and they do so in a single mass harmonic motion (since central mass doesn't move) - That's why frequency is the usual single-mass oscillation \(w^2 = k/v_m \).

For the last eigenmode \(w_3^2 = 3k/v_m \) we have the pattern,

\[
\begin{array}{ccc}
1 & \rightarrow & -2 \\
\uparrow & & \downarrow \\
-2 & \rightarrow & 0 \\
\uparrow & & \downarrow \\
0 & \rightarrow & 1 \\
\end{array}
\]

Note again that COM doesn't move (all this motion is in \(\vec{r}^{(n)} \)).

This has a higher frequency, as expected because the springs get more compressed.

The physical importance of these eigenmodes is that any displacement vector \(\vec{d} \), arbitrary, can be decomposed into eigenmodes, since all 3 are orthogonal, we have

\[
\vec{d} = \sum_{n=1}^{3} (\vec{r}^{(n)} \cdot \vec{d}) \left(\vec{r}^{(n)} \right)
\]

(see eq. # in page 6)

This says how much COM motion \((n=1)\) there is,
how much single-mass oscillation \((n=2)\) there is,
how much high-frequency oscillation \((n=3)\) there is.

This is also useful to describe forced oscillations, see homework 2 problem 10 [12.6 i in Smiede]