**MATHEMATICAL PHYSICS**

** Class: **Monday and Wednesdays, 12:30-1:45, Room 264 (Meyer Building)

** Instructor: **Roman Scoccimarro

** Office Hours: **Mondays 2-3PM, Room 506 Meyer.

** Grades: **Homework (30%), Midterm (30%), Final Exam (40%)

** TA: **Emiliano Sefusatti (es547@nyu.edu) [Recitations are on Thursdays, 9:30AM, Meyer 421]

**Final Exam**

Will be on Friday, May 10, from 10:00 to 11:50 (Room 264).

**Textbooks**

M.L. Boas, ** Mathematical Methods in the Physical Sciences **,
1983, John Wiley & Sons

R. Snieder, ** A Guided Tour of Mathematical Methods for the
Physical Sciences **, 2001, Cambridge Univ. Press

**Homework** [Due on Fridays, 3PM, Meyer 424]

HMW1 [4Feb], HMW2 [Feb15], HMW3 [Feb22], HMW4 [Mar1-8], HMW5 [Mar22-29]

HMW6 [Apr5], HMW7 [Apr19-26], HMW8 [May3]
**Solutions**

HMW1,HMW2,HMW3,HMW4,HMW5,HMW6,HMW7,HMW8

**Lecture Notes**

L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,L17,L18,L19,L20

**Course Outline**

[Bi refers to chapter i in Boas' book, similarly Si for Snieder's book]

**Linear Algebra and Vector Calculus (B3,B6,B10; S1-S12,S21) [4 weeks]**

- Linear Equations, Matrices, Determinants

- Eigenvalues, Eigenvectors, Tensors

- Gradient, Divergence, Curl, Gauss and Stokes Theorems

- Laplacian, Conservation Laws, Scale Analysis

**Fourier Analysis, Complex Analysis (B7,B14-B15; S13-S16) [3 weeks]**

- Dirac Delta Function, Fourier Series

- Fourier Transforms

- Analytic Functions and Complex Integration

** Differential Equations (B8,B12-B13; S17-S20,S22) [6 weeks]**

- Ordinary Differential Equations

- Green Functions, Normal Modes

- Partial Differential Equations

- Potential Theory, Perturbation Theory

**Other Recommended Textbooks**

(On reserve in Bobst Library)

G. Arfken, ** Mathematical Methods for Physicists**

Ablowitz & Fokas, ** Complex Variables**

V.I. Arnol'd, ** Ordinary Differential Equations**

Tikhonov & Samarskii, **Equations of Mathematical Physics**