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The goal of this pure mathematics lecture is to provide a refresher for linear algebra concepts, (re)-introduce tensors,
and define our notation.

A. Basic definitions

Definition: A real vector space is a set V with an internal operation +, such that (V,+) is a commutative group,
and an external operation · such that ∀ (λ,X) ∈ (R,V), λ ·X ∈ V. This operation is associative: λ · (µ ·X) = (λµ) ·X,
distributive: (λ+ µ) ·X = λ ·X + µ ·X and λ · (X + Y ) = λ ·X + λ · Y , and such that 1 ·X = X.

Definition: A basis (e(1), ..., e(n)) is a set of linearly independent vectors of V that spans V, i.e. such that any
vector of V can be written as a linear combination

X = Xµe(µ) ≡
n∑
µ=1

Xµe(µ). (1)

The real numbers Xµ are the components of the vector X on the basis (e(1), ..., e(n)). For any finite-dimensional
vector space, the number n of basis vectors is independent of the chosen basis and is the dimension of the space.

Eq. (1) introduces the summation convention: repeated indices are to be summed over, unless explicitly specified.
We will make sure that pairs of repeated indices always appear as one up and one down.

B. Examples

• Rn is a real vector spaces of dimension n. Cn is a real vector space of dimension 2n.
• Let F be the set of infinitely differentiable functions Rn → R, and define the vector space V as the set of linear

maps F → R. Define the sum and external product as they would be naturally. Exercise: show that this is a vector
space of infinite dimension.
• Another example, which will be the starting point of differential geometry: derivative operators. Let p ∈ Rn.

Consider the subset Tp of the vector space V of linear operators defined above, that satisfy Leibniz’s rule: i.e. for
all T ∈ Tp, for all f, g in F , T (fg) = f(p)T (g) + g(p)T (f). Clearly, Tp contains the usual derivative operators at p
∂/∂x1

∣∣
p
, .., ∂/∂xn

∣∣
p
. Exercise: show that this is indeed a vector space. Prove that it has dimension n, i.e. that it is

the space of directional derivative operators. Tp is called the tangent space at p.

C. Change of basis

Suppose we are given two bases (e(1), ..., e(n)) and (e′(1), ..., e
′
(n)). Let us denote by Λ′

ν
µ′ the ν-th component of

e′(µ′) in the unprimed basis and by Λµ
′

ν the µ′-th component of e(ν) in the primed basis:

e′(µ′) = Λ′
ν
µ′ e(ν), (2)

e(ν) = Λµ
′

ν e
′
(µ′). (3)

Substituting Eq. (2) into Eq. (3) and vice-versa we obtain

Λν
′

νΛ′
ν
µ′ = δν

′

µ′ , (4)

Λ′
ν
µ′Λ

µ′

µ = δνµ, (5)
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which is just stating that Λ and Λ′, seen as matrices, are the inverse of one another. Keeping track of all the primes
can be annoying, so unless explicitly specified, we shall keep primes only on indices from now on, but one should keep
in mind the full underlying meaning. So we write the above equations as

e(µ′) = Λν µ′ e(ν), (6)

e(ν) = Λµ
′

ν e(µ′), (7)

Λν
′

νΛν µ′ = δν
′

µ′ , (8)

Λν µ′Λ
µ′

µ = δνµ. (9)

We denote by Xµ the components of a vector in the unprimed basis and by Xµ′ its components in the primed basis

(again, think of this as X ′
µ′

, but we’ll only keep the prime on the index for short):

X = Xµe(µ) = Xµ′e(µ′). (10)

Using the equations given above, we arrive at (Exercise: show this explicitly):

Xµ′ = Λµ
′

µX
µ, Xµ = Λµ µ′X

µ′ . (11)

D. Dual vectors

Definition: A dual vector (or covector or one-form) is a linear map from V → R. The space of dual vectors
V∗ is called the dual space. It has the same dimension as the vector space V.

Given a basis (e(1), ..., e(n)) we define the the dual basis (e∗(1), ..., e∗(n)) such that e∗(µ)(e(ν)) = δµν . Exercise: show
that it is a basis of the dual space; conclude that the dual and vector spaces have the same dimensions.

Given a dual vector X∗, we can write it as a linear combination of the dual basis vectors:

X∗ = X∗µ e
∗(µ), (12)

where X∗µ are again the components of X∗.
Exercise: Show that the dual bases of two bases (e(µ)), (e(µ′)) are related through

e∗(µ
′) = Λµ

′

µe
∗(µ), e∗(µ) = Λµ µ′e

∗(µ′), (13)

and that the components of dual vectors transform as

X∗µ′ = Λν µ′X
∗
µ, X∗µ = Λµ

′

µX
∗
µ′ . (14)

Hence we see that the transformation law of the components of a vector is identical to the change-of-basis law for
dual basis vectors, and conversely, the transformation law of the components of a dual vector is identical to the
change-of-basis law for basis vectors. This is why vectors are sometimes referred to as contravariant vectors and
dual vectors as covariant vectors.

We can also define the dual of the dual space V∗∗, and the dual-dual basis e∗∗(µ) such that e∗∗(ν)(e
∗(µ)) = δµν =

e∗(µ)(e(ν)). This space has the same dimension as V∗ hence V. For a given vector X we can define the dual-dual
vector X∗∗ such that for any dual vector Y ∗, X∗∗(Y

∗) ≡ Y ∗(X). This mapping is linear, injective (if two vectors have
the same image they must be identical), hence bijective since the two spaces have the same dimension. So we can
identify the dual-dual and initial vector space. From now on we will drop the ∗ when referring to a dual basis:
e(µ) ≡ e∗(µ), and e∗∗(µ) ≡≡ e(µ). For a vector X, we define X(Y ∗) ≡ Y ∗(X).

E. Tensors, abstract index notation

Definition: a tensor of rank (k, l) is a multilinear map from V∗ × ...× V∗︸ ︷︷ ︸
k times

×V × ...× V︸ ︷︷ ︸
l times

→ R. So dual vectors are

tensors of rank (0, 1) and vectors (seen as dual-dual vectors) are tensors or rank (1, 0).
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Given a basis for the initial vector space, a basis for tensors of rank (k, l) is given by the outer products e(µ1) ⊗
...e(µk)⊗ e(ν1)⊗ ...e(νl), where µi, νi ∈ [1, ..., n]. Here we used the identification of the dual-dual with the initial vector
space. So we may write a rank (k, l) tensor T as

T = Tµ1...µk
ν1...νl

e(µ1) ⊗ ...e(µk) ⊗ e
(ν1) ⊗ ...e(νl), (15)

where Tµ1...µk
ν1...νl

are the components of T. Exercise: Show that the components of T are given by

Tµ1...µk
ν1...νl

= T(e(µ1), ..., e(µk), e(ν1), ..., e(νl)). (16)

Exercise: Show that under a change of basis (and corresponding change in dual basis), the components of a tensor
change as

T
µ′1...µ

′
k

ν′1...ν
′
l

= Λ
µ′1
µ1 ...Λ

µ′k
µkΛν1ν′1

...Λνlν′l
Tµ1...µk

ν1...νl
. (17)

Note: some textbooks may use this transformation law to define a tensor. I prefer the geometric, basis-indpendent
definition of a multi-linear map on vectors and dual vectors.

An example of tensor of rank (1, 1) is the identity tensor I = δαβ . Exercise: Show using the tensor-component
transformation law that this indeed transforms as a tensor.

By now it should be clear that vectors, dual vectors and tensors are geometric objects that have neaning
independently of any basis, and that their components are specific to a given basis. The notation T clearly does
not convey the rank of a tensor, and it would be bulky to keep adding asterisks, arrows, bars, or any other symbols.
So we adopt the following abstract index notation, and denote by Tα1...αk

β1...βl
a tensor of rank (k, l), seen as a

geometric, basis-independent quantity. For instance, we denote a vector by Xα and a dual vector by Yα, dropping

asterisks. Tαβγδ is a tensor of rank (2, 2), i.e. a linear map from V∗ × V∗ × V × V.
The obvious disadvantage of this notation is that it looks similar to the components. In order to circumvent this,

we will (try to) stick to using the first half of the alphabet to denote a geometric, basis-independent object, and the
second half to refer to components in a specific basis. For instance, we may write something like

Xα = Xµeα(µ). (18)

In words, this equation says that the components of the vector Xα on the basis (eα(1), ..., e
α
(n)) are X1, ..., Xn. We

will also (try to) stick to having parenthesis on the labeling of basis vectors, to distinguish them from components of
co-vectors.

F. Tensor operations

Consider a rank (k, l) tensor T and a rank (p, q) tensor S. We define the outer product tensor O as the (k+p, l+q)
tensor such that,

O(X(1), ..., X(k), ...X(k+p);Y(1), ..., Y(l), ...Y(l+q)) ≡ T(X(1), ..., X(k);Y(1), ..., Y(l))S(X(k+1), ..., X(k+p);Y(l+1), ..., Y(l+q).
(19)

In abstract index notation, this has the more compact expression

O
α1...αk...αk+p

β1...βl...βl+q
≡ Tα1...αk

β1...βl
S
αk+1...αk+p

βl+1...βl+q
. (20)

Given a tensor T of rank (k, l) we define the contraction on the p-th upper index and q-th lower index as follows:
choose a basis e(µ) with corresponding dual basis e(µ), we define the tensor CT of rank (k − 1, l − 1) as

CT(X(1), ..., X(k−1);Y(1), ..., Y(l−1)) ≡ T(X(1), ... e(µ)
(p-th slot)

, ..., X(k−1);Y(1), ... e(µ)
(q-th slot)

, ..., Y(l−1)). (21)

Exercise: Show that the resulting tensor is independent of the basis chosen to define the contraction. In abstract
index notation, this tensor is

T
α1,...γ,...αk−1

β1,...γ,...βl−1
, (22)

where the repeated index γ is at the p-th upper slot and the q-th lower slot.
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We say that a tensor is symmetric in the slots p and q if

T(X(1), ...X(p), ..., X(q), ..) = T(X(1), ...X(q), ..., X(p), ..), (23)

or, in abstract index notation,

Tα1,...,αp,...,αq,... = Tα1,...,αq,...,αp,.... (24)

For example, a tensor g of rank (0, 2) is symmetric if gαβ = gβα.
The property of antisymmetry is similarly defined. For instance, a tensor F of rank (0, 3) is antisymmetric in its

first 2 indices if Fαβγ = −Fβαγ .
A tensor of rank (k, 0) or rank (0, l) is completely symmetric if it is symmetric in all slot pairs. A completely

antisymmetric tensor is defined similarly.
Exercise: What is the dimension of the space spanned by tensors of rank (k, 0) on a vector space of dimension

n? What is the dimension of the space spanned by completely symmetric (0, k) tensors? How about completely
antisymmetric (k, 0) tensors?

We now define the operations of symmetrization and antisymmetrization. We first define Pn as the set of
permutations of [1, ...n]. For a permutation σ ∈ Pn, we define its signature s(σ) as +1 if σ contains an even number
of pair exchanges and −1 if it contains an odd number. For instance, [1, 2, 3] ⇒ [2, 3, 1] has signature +1, and
[1, 2, 3]⇒ [2, 1, 3] has signature −1.

Given a tensor T, we define its symmetric and antisymmetric parts as

T (α1...αn) ≡ 1

n!

∑
σ∈Pn

Tασ(1)...ασ(2) , (25)

T [α1...αn] ≡ 1

n!

∑
σ∈Pn

s(σ)Tασ(1)...ασ(2) (26)

These tensors are, respectively, completely symmetric and antisymmetric. For instance

T(αβ) ≡
1

2
(Tαβ + Tβα) , (27)

T[αβ] ≡
1

2
(Tαβ − Tβα) . (28)

Exercise: Write explicitly the completely symmetric and antisymmetric parts of a tensor of rank (0, 3). Note that
only tensors of rank (2, 0) [or (0, 2)] can be written as the sum of their symmetric part and antisymmetric parts.

G. Metric

In order to do physics, we require more structure: that of a metric. The metric is a central object in general
relativity, which conveys the notions of distances and angles (among other things). For now we will be content with
a mathematical definition. When we say “the” metric we assume that there is a preferred metric on the vector space
of interest.

Definition. A metric is a symmetric, non-degenerate tensor of rank (0, 2). Non-degenerate means that gαβA
β =

0⇔ Aα = 0, i.e. there cannot be any non-zero vector Aα such that the dual vector gαβA
β is the zero dual vector.

Two vectors X,Y are said to be orthogonal if g(X,Y ) = gαβX
αY β = 0. A vector X is said to have unit norm is

g(X,X) = ±1, and is said to be null if g(X,X) = 0, i.e. X is orthogonal to itself.
Exercise: show that we can always find a basis in which gµν = ±δµν , i.e. in which only the diagonal components

are non-vanishing, and they are all equal to plus or minus one. Such a basis is an orthonormal basis.
Exercise: (Sylvester’s law of inertia) show that the number of pluses and minuses (the signature of the metric)

is independent of the basis in which the metric is diagonalized.
Definition: The inverse metric gαβ is the unique symmetric, non-degenerate tensor of rank (2, 0) such that

gαβgβγ = δαγ . The fact that this tensor must be non-degenerate is easy to prove: if gαβAβ = 0, then, multiplying by
gγα, we get Aγ = 0. The fact that it is unique follows from the non-degeneracy of g (Exercise: prove it). Finally,
the existence can be proven by explicitly defining gµν = gµν in an orthonormal basis.

The metric tensor can be used to map vectors to one-forms: given a vector Xα, we may define the one-form X∗α such
that, for any vector Y , X∗(Y ) ≡ g(X,Y ). In abstract index notation, we have X∗βY

β = gαβX
αY β for all Y , implying

X∗α ≡ gαβX
β . So the metric can be used to lower indices. We will no longer write the asteriks explicitly. Note
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that without a metric, we did not have a basis-independent way to define a dual vector given a vector. Similarly, we
may use the inverse metric to raise indices: given a one-form Xα we define the vector Xα ≡ gαβXβ .

More generally, the metric and inverse metric can be used to raise and lower indices of a tensor of
arbitrary rank, for instance

T β δ
α γ ≡ gασ gδρ Tσβγρ. (29)

Finally, note that gαγ ≡ gαβgβγ = δαγ .


