Differentiations

• Terminology

- We will consider eqns of the form \(\frac{df}{dx} = f(x, y(x)) \)

Sometimes \(y \) is called the "dependent variable". Fundamentally, \(y \) is a function, not a variable. In contrast, \(x, y \) are called "independent variables" - they are the variables on which \(f \) depends.

\[
\frac{dy}{dx} = (y(x) - 3)^2 \quad \text{[dependent depends on independent]}
\]

- Ordinary differential equation (ODE): Has only one independent var.

- Partial differential equation (PDE): 2 or more independent vars.

\[
\begin{align*}
e.g.: \quad \frac{d y^3}{dx} + (y(x))^3 &= 3 \quad \text{ODE} \\
\frac{\partial y(x, y)}{\partial x \partial y} - \frac{3}{y(x, y)} &= 2 \quad \text{PDE}
\end{align*}
\]

- Linear differential equations: depend linearly on the dependent variable (i.e. function) and all its derivatives.

If not, it is a non-linear differential eqn.

\[
\begin{align*}
e.g.: \quad \frac{\partial (x, y)}{\partial x} + x^2y + \frac{\partial (x, y)}{\partial x} - \frac{3}{x^2+y^2} y(x, y) &= 0 \quad \text{linear} \\
\frac{d y}{dx} + 4(y(x))^2 &= 0 \quad \text{non-linear} \quad \text{(usually a lot harder to solve)}
\end{align*}
\]
The order of an ODE or PDE is the order of the highest derivative (whether ordinary or partial).

\[\frac{\partial^3 f(x,y)}{\partial x^2 \partial y} + 4 \sin(f(x,y)) = 0 \quad : \quad 3 \text{-rd order} \]

\[\frac{dl}{dx} + \frac{4}{l(x)} = 2 \quad : \quad 1 \text{-st order} \]

Order determines number of boundary conditions needed to solve.

Coupled differential equations have more than one dependent var.

\[\frac{d^2 l_1}{dx^2} = l_1(x) - l_2(x), \quad \frac{d^2 l_2}{dx^2} = l_2(x) - l_1(x). \]

A homogeneous linear ODE or PDE only has terms proportional to the dependent variables.

\[\frac{\partial^3 l}{\partial x \partial y} + 3 l(x,y) = 0 \quad \text{homogeneous} \]

\[\frac{\partial^3 l}{\partial x \partial y} + 3 l(x,y) = \sin x \cos y \quad \text{non-homogeneous} \]

A homogeneous ODE/PDE always has \(l = 0 \) as a solution.

A non-homogeneous equation is also called driven: describe the response of a system to a driving force.

In general, we write a linear equation in the form

\[L[l(x,y)] = S(x,y) \quad \text{Source (non-zero for non-homogeneous equations)} \]

linear differential operator

\[L = \frac{\partial^3}{\partial x^2 \partial y} \]

\[L[\lambda_1 l_1 + \lambda_2 l_2] = \lambda_1 L[l_1] + \lambda_2 L[l_2] \]
• If two functions are solutions to a homogeneous linear differential equation, then any linear combination is a solution as well:
\[L[f_1(x)](x) = 0 \quad \text{and} \quad L[f_2(x)](x) = 0 \Rightarrow L[\lambda f_1(x) + \lambda f_2(x)](x) = 0. \]

• If a function \(f_p \) is a particular solution of a nonhomogeneous differential eq, then \(f_p + f_h \) is also a solution for any \(f_h \) that solves the homogeneous eq:
\[L[f_h] = 0 \quad \text{and} \quad L[f_p] = S \]
\[\Rightarrow L[f_h + f_p] = L[f_h] + L[f_p] = 0 + S = S. \]

First-order ODEs
(\(\Rightarrow \) need 1 boundary condition)

Consider the nonlinear, nonhomogeneous ODE:
\[f''(x) + f(x) = \sin x \quad \text{with boundary condition} \quad f(0) = 0. \]

Recognize the left-hand side as \(\frac{1}{3} \frac{d}{dx} [f'(x)]^3 \)

right-hand side is \(-\frac{d}{dx} (\cos x) \quad \text{constant} \)

\[\Rightarrow \quad \frac{1}{3} \frac{d}{dx} [f'(x)]^3 = -\frac{d}{dx} (\cos x) \Rightarrow \quad \frac{1}{3} [f'(x)]^3 = -\cos x + C \]

To determine \(C \): \(f(0) = 0 \Rightarrow \quad \frac{1}{3} = -1 + C \Rightarrow C = \frac{4}{3} \)

\[\Rightarrow [f'(x)]^3 = 4 - 3 \cos x \quad \Rightarrow \quad f'(x) = (4 - 3 \cos x)^{1/3} \]

One can also, completely equivalently, use separation of variables.
\[\frac{d^2 f}{dx^2} = \sin x \] multiply by \(df \) \[\int_0^x f^2 \, df' = \int_0^x \sin x \, dx' \] (consistent with \(f(0) = 0 \))

\[\Rightarrow \frac{1}{3} f^3 = 1 - \cos x \]

Some answer. Use whichever way makes more sense to you.

\[\boxed{\frac{df}{dx} + P(x) \, f(x) = S(x), \quad f(x_0) = f_0.} \]

Solution to the linear, non-homogeneous, 1st-order ODE:

This method relies on two simple equations:

\[\frac{d}{dx} e^x = e^x \]

\[\frac{d}{dx} \left[\int_{x_0}^{x} dx' \, P(x') \right] = P(x) \] (method called \(\text{integrating factor} \)).

\[\frac{d}{dx} e^{g(x)} = e^{g(x)} \times \frac{dg}{dx} \] (chain rule).

\[\Rightarrow \frac{d}{dx} \left(e^{g(x)} \, f(x) \right) = \frac{d}{dx} e^{g(x)} \times f(x) + e^{g(x)} \times \frac{df}{dx} \]

\[\Rightarrow \frac{d}{dx} \left[e^{g(x)} \, f(x) \right] = e^{g(x)} \left[\frac{df}{dx} + \frac{dg}{dx} \times f(x) \right] \] (very useful equation).

\[\ast \text{ Apply to } g(x) = \int_{x_0}^{x} dx' \, P(x') \] (\(x_0 \) fixed), \(\frac{dg}{dx} = P(x) \)

\[\Rightarrow \frac{d}{dx} \left[e^{\int_{x_0}^{x} dx' \, P(x')} \right] = e^{\int_{x_0}^{x} dx' \, P(x')} \left[\frac{df}{dx} + \frac{dg}{dx} \times f(x) \right] \]
Let us now solve \(\frac{dl}{dx} + \lambda l(x) = S(l(x)) \) \(l(x) = b_0 \).

1. Multiply both sides by \(e^{\int_{x_0}^{x} d\eta' P(\eta')} \):

\[
e^{\int_{x_0}^{x} d\eta' P(\eta')} \left(\frac{dl}{dx} + \lambda l(x) S(l(x)) \right) = e^{\int_{x_0}^{x} d\eta' P(\eta')} S(l(x))
\]

2. Recognize the left-hand-side:

\[
\frac{d}{dx} \left[e^{\int_{x_0}^{x} d\eta' P(\eta')} l(x) \right] = e^{\int_{x_0}^{x} d\eta' P(\eta')} S(l(x)) + \text{Constant}.
\]

3. Compute the anti-derivative:

\[
= b_0 \quad \text{so} \quad l\left(x_0\right) = b_0.
\]

4. Get rid of exponential on left-hand side:

\[
l(f) = b_0 e^{-\int_{x_0}^{x} d\eta' P(\eta')} + \int_{x_0}^{x} d\eta' S(l(\eta')) e^{\int_{x_0}^{x} d\eta' P(\eta')}.
\]

\[\boxed{\text{Simplest case: } \frac{dl}{dx} + \lambda l(x) = S(l(x)) \implies l(x) = \lambda \implies \int_{x_0}^{x} d\eta' P(\eta') = \lambda (\gamma - x_0)\]

\[
\implies l(\eta) = b_0 e^{-\lambda(\gamma - x_0)} + \int_{x_0}^{x} d\eta' S(l(\eta')) e^{-\lambda(\gamma - \eta')}
\]

\[\text{Example: Suppose we have a population of bacteria/radioactive elements/anything with a typical lifetime } \gamma.\]

\[\text{Call the number of bacteria/elements } N(t).\]
If it doesn't get renewed, \(\frac{dN}{dt} = -\frac{N(t)}{T} \Rightarrow N(t) = N(0) e^{-t/T} \).

I.e. the initial population decays exponentially.

Now suppose we add new bacteria / elements at a rate \(S(t) \):

\[
\frac{dN}{dt} = \frac{-N(t)}{T} + S(t)
\]

\[
\Rightarrow N(t) = N(0) e^{-t/T} + \int_0^t S(t') e^{-\frac{t-t'}{T}} dt'
\]

\(\text{exponential decay between } t' \text{ and } t \).

Add \(S(t') dt' \) in time interval \(dt' \).

Let's now solve example 10.2 of the textbook: (with a different method)

\[
\frac{dy}{dx} = -\frac{3x^2 + 2y^2}{4xy}
\]

\(y(1) = 1 \)

* Multiply by \(2y \):

\[
\frac{dy}{dx} \frac{dy}{dx} = -\frac{3x^2 + 2y^2}{2x} \Rightarrow \frac{d}{dx} \left(\frac{y^2}{2} \right) = -\frac{3}{2} x
\]

Use the "integrating factor" method: multiply by \(e^{\int \frac{3}{2} dx} = e^{\frac{3}{2} x} \).

\[
\frac{d}{dx} \left(\frac{y^2}{2} \right) = -\frac{3}{2} x^3 + C
\]

\(y(1) = 1 \Rightarrow 1 = -\frac{3}{2} + C \Rightarrow C = \frac{3}{2} \)

\[
\Rightarrow y^2 = \frac{3}{2} - \frac{3}{2} x^3 \Rightarrow y^2 = \frac{3 - x^3}{2x} \Rightarrow y = \sqrt{\frac{3 - x^3}{2x}}
\]

Second-order linear ODEs

Example: Harmonic oscillator: \(\frac{d^2 y}{dx^2} = -\omega^2 y(x) \)

\(\Rightarrow y(x) = A \sin(\omega x) + B \cos(\omega x) \)

(you should know the solution to this ODE).
Method of solution if \[a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0, \quad a, b, c \text{ real const.}, \quad a \neq 0. \]

1) Find the (complex) solutions of \[aX^2 + bX + c = 0. \]

\[X = \lambda_1, \lambda_2 \implies aX^2 + bX + c = a(X - \lambda_1)(X - \lambda_2) \]

with \(a(\lambda_1 + \lambda_2) = b, \quad a\lambda_1\lambda_2 = c. \)

Since \(a, b, c \) are real, we find \(\text{Im}(\lambda_1) = -\text{Im}(\lambda_2) \).

2) \[a \left(\frac{d}{dx} - \lambda_1 \right) \left(\frac{dy}{dx} - \lambda_2 y \right) = a \left(\frac{d^2 y}{dx^2} - (\lambda_1 + \lambda_2) \frac{dy}{dx} + \lambda_1 \lambda_2 y \right) \]

\[= a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0. \]

Let's solve in two steps:

- Define \(s(x) = \frac{dy}{dx} - \lambda_2 y(x) \)

\[\Rightarrow \frac{ds}{dx} - \lambda_1 s(x) = 0. \]

Linear, 1st-order homogeneous eq. for \(s(x) \).

- Simple solution: \(s(x) = A e^{\lambda_1 x} \)

- \(\frac{dy}{dx} - \lambda_2 y(x) = A e^{\lambda_1 x} \left(e^{-\lambda_2 x} \right) \)

- \(e^{-\lambda_2 x} \left(\frac{dy}{dx} - \lambda_2 y(x) \right) = A \left(e^{(\lambda_1 - \lambda_2)x} \right) \) \(\Rightarrow \) left-hand side \(= \frac{d}{dx} \left(e^{-\lambda_2 x} y(x) \right) \).

2. Case: \(\text{If } b^2 = 4ac \implies \lambda_1 = \lambda_2 = \lambda = -\frac{b}{2a}, \) a real number.

\[\Rightarrow \frac{d}{dx} \left(e^{-\lambda x} y(x) \right) = A \implies e^{-\lambda x} y(x) = Ax + B \]

\[\Rightarrow y(x) = e^{\lambda x} (Ax + B), \quad A, B \text{ determined from boundary conditions.} \]
\[\text{If } \lambda_1 + \lambda_2 : \quad e^{-\lambda_2 x} y(0) = \frac{A}{\lambda_1 - \lambda_2} e^{(\lambda_1 - \lambda_2) x} + B \]

\[\Rightarrow y(0) = A e^{\lambda_1 x} + B e^{\lambda_2 x} \]

\[\Rightarrow \]

\[\text{If } b^2 - 4ac > 0, \quad \lambda_1, \lambda_2 \text{ both real, } A, B \text{ both real, determined from boundary conditions.} \]

\[\Rightarrow \text{If } b^2 - 4ac < 0, \quad \lambda_1 = -\frac{b}{2a} + i \sqrt{b^2 - 4ac} = \lambda_{Re} + i \lambda_{Im} \]

\[\lambda_2 = \lambda_{Re} - i \lambda_{Im}, \]

\[\text{so } y(0) = e^{\lambda_{Re} x} \left(A e^{i \lambda_{Im} x} + B e^{-i \lambda_{Im} x} \right). \quad A, B \text{ complex.} \]

We can rewrite this as a linear combination:

\[y(0) = e^{\lambda_{Re} x} \left(\alpha \cos(\lambda_{Im} x) + \beta \sin(\lambda_{Im} x) \right), \quad \alpha, \beta \text{ real.} \]

This is an example where complex numbers are a useful intermediate step, even though the final result is a real number.

Simplest application: \[d^2 y + \omega^2 y = 0 \quad \lambda^2 + \omega^2 = 0 \quad \Rightarrow \lambda = \pm i \omega \]

\[\Rightarrow y(x) = \alpha \cos(\omega x) + \beta \sin(\omega x). \]

The Wronskian

Most general linear, second-order, homogeneous ODE:

\[y''(x) + P(x) y'(x) + Q(x) y(x) = 0 \]

\[\left[y' = \frac{dy}{dx}, \quad y'' = \frac{d^2 y}{dx^2} \right]. \]

Second-order \(\Rightarrow\) there should be 2 independent solutions: \(y_1(x), y_2(x)\)

Define \(W(x) = y_1(x) y_2'(x) - y_2(x) y_1'(x)\)

\[W' = y_1 y_2'' + y_1' y_2' - y_2' y_1' - y_2 y_1'' = y_1 y_2'' - y_2 y_1''. \]
Now, both \(y_1 \) and \(y_2 \) are solutions \(\Rightarrow y_1'' = -P(x) y_1' - Q(x) y_1 \),
\(y_2'' = -P(x) y_2' - Q(x) y_2 \),
\(\Rightarrow W'(x) = -y_1(x)\left[Py_2' + Qy_2\right] + y_2\left(Py_1' + Qy_1\right) = P \left(-y_1 y_2' + y_2 y_1'\right) = -PW \).

\(\Rightarrow \) The Wronskian \(W(y) \) satisfies the first order ODE,
\[\frac{dW}{dx} + P(x) W(y) = 0 \]
We know how to solve this: \(W(x) = W_0 e^{-\int_{x_0}^{x} P(x) \, dx} \).

- **Application I**: Find \(y_2 \) given \(y_1 \).

\(\Rightarrow \) Suppose we found \(y_1(x) \). We want to find \(y_2(x) \).
\[\frac{1}{y_1} \frac{dy_2}{dx} = \frac{y_2'}{y_1} - \frac{y_1 y_2'}{y_1^2} = \frac{y_2 y_1' - y_1 y_2'}{y_1^2} = \frac{W}{y_1^2} \]
\(\Rightarrow \frac{y_2}{y_1}(x) = \int_{x_0}^{x} \frac{W(y)}{[y_1(y)]^2} \, dy + C \)
\(\Rightarrow y_2(x) = C y_1(x) + y_1(x) \int_{x_0}^{x} \frac{W(\nu)}{[y_1(\nu)]^2} \, d\nu \).
(can drop \(C \) if \(y_2 \) is independent of \(y_1 \)).

- **Application II**: Nonhomogeneous equations

\[y''(x) + P(x) y'(x) + Q(x) y(x) = S(x) \]
Suppose we have 2 solutions of the homogeneous eq., \(y_1(x), y_2(x) \).
Define:
\[z_1(x) = \int_{x_0}^{x} \frac{y_1(\nu)}{W(\nu)} S(\nu) \quad z_2(y) = \int_{x_0}^{x} \frac{y_2(\nu)}{W(\nu)} S(\nu) \]
\[\Rightarrow z_1'(x) = \frac{y_1(x)}{w(x)} S(x), \quad z_2'(x) = \frac{y_2(x)}{w(x)} S(x). \]

Define \(y_p(x) = y_2(x) z_1(x) - y_1(x) z_2(x) \)

\[\Rightarrow y_p' = y_2' z_1 + y_2 \frac{y_1}{w} S - y_1' z_2 - y_1 \frac{y_2}{w} S = y_2' z_1 - y_1' z_2. \]

\[y_p'' = y_2'' z_1 + y_2' \frac{y_1}{w} S - y_1'' z_2 - y_1' \frac{y_2}{w} S = y_2'' z_1 - y_1'' z_2 + S \]

\[y_2' S - y_1' S = \frac{w}{w} S = S. \]

\[\Rightarrow y_p'' + P y_p' + Q y_p = z_1(y_2'' + P y_1' + Q y_1) - z_2(y_1'' + P y_2' + Q y_2) + S \]

\[= 0 \quad = 0 \]

\(y_1 \) and \(y_2 \) solutions of homogeneous eq.

\[\Rightarrow y_p \text{ is a particular solution of the nonhomogeneous equation.} \]

Note: You should NOT remember this by heart. It is useful to remember that a particular solution can be written in terms of the Wronskian.

- **Method of Frobenius**

 Series approach method to solve linear, homogeneous ODEs.

 We will study a specific example: \(x^2 y''(x) + x y'(x) + x^2 y(x) = 0 \)

 Look for a solution of the form \(y(x) = \sum_{n=0}^{\infty} c_n x^n \)

 \[\sum_n c_n \left(n(n-1) x^n + n x^n + x^{n+2} \right) = 0 \]

 Define \(p = n+2 \) dummy variable

 \[\Rightarrow n = p-2 \]

 \[\Rightarrow \sum_n \left[(n(n-1) + n) c_n + c_{n-2} y x^n \right] = 0 \quad \text{(renamed } p \rightarrow n). \]
Can only hold for all \(x \) if \(\mu c_n + c_{n-2} = 0 \).

This gives us a recursion relation. Implies \(c_0 = 0 \), \(c_0 \) undetermined.

\[(-2)^n c_{-\ell} + c_{-\ell-2} = 0 \Rightarrow c_{-\ell} = 0 \text{, etc.} \quad c_{-2\ell} = 0, \quad \forall \ell > 0. \]

* For positive even \(n = 2p \):

\[
C_{2p} = -\frac{C_{2(p-1)}}{(2p)^2} = + \frac{C_{2(p-2)}}{4^2 \left[p(p-1)\right]^2} = - \frac{C_{2(p-1)}}{4^3 \left[p(p-1)(p-2)\right]^2} = (-1)^{p} \frac{c_0}{4^p (p!)^2}
\]

* All odd \(n = 2p+1 \) are related to \(c_1 \):

\[
C_{2p+1} = -\frac{C_{2(p-1)+1}}{(2p+1)^2} = + \frac{C_{2(p-1)+1}}{(2p+1)(2p-1)!} = (-1)^{p} \frac{c_1}{(2p+1)!}
\]

\[c_{-1} = -c_1 \text{. Can then relate all } c_{-(2p+1)} \text{ to } c_{-1} = -c_1. \]

Bottom line: \(y(x) = c_0 \sum_{p=0}^{\infty} (-1)^{p} \frac{x^{2p}}{4^p (p!)^2} + c_1 \sum_{p=0}^{\infty} x^{2p+1} \)

Two independent solutions, defined as series.

For this specific example, these are \(j_0, y_0 \), spherical Bessel function of the first and second kind.

Radius of convergence: Use ratio test.

\[
Z_p \equiv (-1)^{p} \frac{x^{2p}}{4^p (p!)^2} \quad j_0(x) = Z_0 \sum_{p=0}^{\infty} \left| Z_p \right| = \frac{x^2}{4 (p+1)^2} \xrightarrow[p \to \infty]{} 0
\]

\(\Rightarrow \) This series has an infinite radius of convergence.
Method of quadrature

Suppose we want to solve \(y''(x) = f(y(x)) \):

* Multiply both sides by \(y'(x) \):
 \(y'(x) y''(x) = f(y(x)) y'(x) \)

* Recognize that \(\frac{d}{dy} \left(\frac{1}{2} [y'(x)]^2 \right) = y'(x) y''(x) \).

* Find the antiderivative of \(f \):
 \(g(y) \) s.t. \(\frac{dg}{dy} = f \).

\[\Rightarrow \frac{d}{dx} \left(g(y(x)) \right) = \frac{dg}{dy} \cdot y'(x) = f(y(x)) y'(x) \quad \text{[chain rule]} \]

\[\Rightarrow \text{The equation can then be rewritten as} \quad \frac{d}{dx} \left(\frac{1}{2} [y'(x)]^2 \right) = 2 \frac{d}{dx} \left[g(y(x)) \right] \]

\[\Rightarrow \left(y'(x) \right)^2 = 2 g(y(x)) + C \quad \text{determined by boundary conditions} \]

\[\Rightarrow y'(x) = \pm \sqrt{2 g(y(x)) + C} = \frac{dy}{dx} \]

Now we integrate by method of separation of variables:

\[\frac{dy}{\sqrt{2 g(y) + C}} = \pm dx \quad \Rightarrow \int_{y_0}^{y} \frac{dy}{\sqrt{2 g(y) + C}} = x - x_0 \quad \text{determined by 2nd boundary condition} \]

Examples. (i) \(y''(x) = \frac{1}{\sqrt{y(x)}} \quad y(0) = 0 \quad y'(0) = 0 \)

\[f(y) = \frac{1}{\sqrt{y}} \quad \text{Antiderivative:} \quad g(y) = 2 \sqrt{y} \]

Multiply by \(g'(y) \):

\[y'(x) y''(x) = \frac{y'(x)}{\sqrt{y(x)}} \]

\[\Rightarrow \frac{d}{dx} \left[\frac{1}{2} [y'(x)]^2 \right] = \frac{d}{dx} \left[2 \sqrt{y(x)} \right] \]
\[\frac{1}{2} \left[y'(b) \right]^2 = 2 \sqrt{y(x)} + C \]

Plug in boundary conditions at \(x = 0 \Rightarrow C = 0 \)

\[\Rightarrow \left[y'(b) \right]^2 = 4 \sqrt{y(b)} \]

\[\Rightarrow y'(b) = \pm 2 \left[y(b) \right]^{rac{1}{4}} \]

Separation of variables: \(\frac{dy}{y^{rac{3}{4}}} = \pm \frac{2}{x} \, dx \)

Integrate, using \(y(0) = 0 \)

\[\int_0^y \frac{dy'}{y'^{\frac{1}{4}}} = \pm \int_0^x 2 \, dx \Rightarrow \frac{4}{3} y^{\frac{3}{4}} = \pm 2x \]

The only real solution is with the plus sign: \(y(x) = \left(\frac{3}{2}x \right)^{\frac{4}{3}} \)

It is always good to check. \(y'(b) = \frac{4}{3} \left(\frac{3}{2}x \right)^{\frac{1}{3}} \times \frac{3}{2} = 2 \left(\frac{3}{2}x \right)^{\frac{1}{3}} \)

\[\left(\text{Chain rule!} \right) \]

\[y''(x) = 2 \cdot \frac{1}{3} \left(\frac{3}{2}x \right)^{-\frac{1}{3}} \times \frac{3}{2} = \left(\frac{3}{2}x \right)^{-\frac{2}{3}} = \frac{1}{\sqrt{y(x)}} \]

\[(ii) \quad R''(r) = -\frac{GM}{R(r)^2} \quad R(0) = R_0, \quad R'(0) = 0 \]

\[g(r) = -\frac{GM}{R^2} \quad \text{Anti-derivative:} \quad g(r) = \frac{GM}{R} \]

Multiply by \(R'(r) \Rightarrow \quad R'(r) R''(r) = -\frac{GM}{R(r)^2} R'(r) \)

\[\frac{d}{dr} \left(\frac{1}{2} R'(r)^2 \right) = \frac{d}{dr} \left(\frac{GM}{R(r)} \right) \]

\[\Rightarrow \frac{1}{2} R'(r)^2 - \frac{GM}{R(r)} = C \quad \text{Plug in:} \quad R(0) = R_0, \quad R'(0) = 0 \]

\[\Rightarrow C = -\frac{GM}{R_0} \]

Physical interpretation: conservation of energy

\[\Rightarrow R'(r) = \pm \sqrt{2GM} \left(\frac{1}{R(r)} - \frac{1}{R_0} \right)^{\frac{1}{2}} \]
This only makes sense if \(R(t) < R_0 \). Initially, \(R'(t) < 0 \).

Use separation of variables:
\[
\frac{dR}{(\frac{1}{R} - \frac{1}{R_0})^2} = -\sqrt{2GM} \ dt
\]

Integrate:
\[
\int_{R_0}^{R} \frac{dR'}{(\frac{1}{R'} - \frac{1}{R_0})^2} = -\sqrt{2GM} (R - R_0)
\]

Define \(x = \frac{R}{R_0} \), \(dx = \frac{R}{R_0^2} \ dt \) \Rightarrow
\[
\int_{\frac{1}{R_0}}^{\frac{1}{R}} \frac{dx}{(\frac{1}{x} - 1)^2} = \sqrt{\frac{2GM}{R_0^3}} (R - R_0)
\]

This does have some explicit expression, although awful, of the form:
\[
F(\frac{R}{R_0}) = \sqrt{\frac{2GM}{R_0^3}} (R - R_0), \quad F(2) = \int_{\frac{1}{R_0}}^{2} \frac{dx}{(\frac{1}{x} - 1)^2}
\]

We can find \(R(t) \) upon inverting this function (numerically).

Green's Function

Consider a linear nonhomogeneous order \(n \) ODE of the form:
\[
\mathcal{L}[y](x) = S(x)
\]
where \(\mathcal{L}[y] \) is a linear differential operator.

Eg: For second-order ODE, \(\mathcal{L}[y](x) = \frac{d^2}{dx^2} y + P(x) \frac{dy}{dx} + Q(x) y \).

Suppose we moreover have homogeneous boundary conditions, i.e. some linear combinations of all first derivatives = 0.
For a second order ODE,
\[2f'(a) + 3f(a) = 0 \quad \text{boundary condition at } x = a\]
\[f'(b) - 2f(b) = 0 \quad \text{boundary condition at } x = b.\]

The basic idea of a Greens function comes from the principle of superposition:

Suppose \(S(x) = \lambda_1 S_1(x) + \lambda_2 S_2(x) \)
\[L[f_1](x) = S_1(x), \quad L[f_2](x) = S_2(x)\]
+ \(f_1, f_2 \) satisfy homogeneous boundary conditions.

\[\Rightarrow \text{Define } f = \lambda_1 f_1 + \lambda_2 f_2, \quad L[f](x) = S(x) \quad \text{for any } \lambda \]
\(f \) satisfies boundary conditions since they are homogeneous.

Now suppose we have \(S(x) = \sum_{n=0}^{\infty} \lambda_n S_n(x) \)
\[L[f_n](x) = S_n(x) \Rightarrow \text{solution } f(x) = \sum_{n=0}^{\infty} \lambda_n B_n(x)\]

Suppose \(S(x) = \int_{-\infty}^{+\infty} dy \lambda(y) R(x, y) \)
Fix \(y, L \) concerns only \(x \)

Define \(F(x,y) \) s.t. \(L[F(x,y)] = R(x,y) \)
\[\Rightarrow f(x) = \int_{-\infty}^{+\infty} dy \lambda(y) F(x, y) \text{ is the solution of } L[f] = S.\]
Just think of \(\int_{-\infty}^{+\infty} dy \lambda(y) F(x, y) \approx \sum_{n} \lambda(y_n) F(x, y_n) \) for some particular \(y_n \).
Example: \[\mathcal{L}[f](x) = \frac{d^2 f}{dx^2} + p(x) \frac{df}{dx} + q(x) f(x) = S(x) = \int dy \, R(x, y). \]
\[
\begin{align*}
& f'(0) = 0 \\
& f'(1) - 2f(1) = 0.
\end{align*}
\]

\[F(x, y) \text{ satisfies } \begin{cases}
\frac{\partial^2 F}{\partial x^2} + p(x) \frac{\partial F}{\partial x} + q(x) F(x, y) = R(x, y), \\
\frac{\partial F}{\partial x}(1, y) = 0, \\
\frac{\partial F}{\partial x}(0, y) = 0, \\
\frac{\partial^2 F}{\partial x^2}(1, y) - 2F(1, y) = 0, \quad \forall y.
\end{cases} \]

- We can always write \(S(x) = \int_{-\infty}^{+\infty} dy \, S(y) \, \delta_D(x-y) \).

We define the Green's function \(G(x, y) \) s.t.
\[\mathcal{L}[G(x, y)](x) = \delta_D(x-y) + \text{boundary conditions}. \]
\[\left(\text{e.g. } \frac{\partial^2 G}{\partial x^2} + p(x) \frac{\partial G}{\partial x} + q(x) G(x, y) = \delta_D(x-y) \right) \]

\(\Rightarrow \) the full solution is \(f(x) = \int_{-\infty}^{+\infty} dy \, S(y) \, G(x, y) \).

Why is this useful?

Suppose you don't know in advance what \(S \) is going to be. If you compute the Green's function \(G(x, y) \), you will be able to find the solution for any \(S \).
We can actually solve this explicitly:
\[y'(x) = y'(0) + \int_0^x F(x') \quad [x' = dummy\ integration\ variable] \]

Integrate again: \[y(x) = y'(0) x + \int_0^x dx' \int_0^{x'} F(x'') \]

Let us simplify the double integral by changing the order of \(x', x'' \):

Current integral: integrate over \(x'' \in [0, x'] \)

\(\text{Then } x' \in [0, x] \).

Equivalent: integrate over \(x' \in [x'', x] \)

\(\text{Then } x'' \in [0, x'] \).

\[y(x) = y'(0) x + \int_0^x dx'' \int_0^{x''} F(x'') \]

\[= y'(0) x + \int_0^x dx'' (x-x'') F(x'') \]

We still don't know \(y'(0) \): we know that \(y(1) = 0 \)

\[\Rightarrow \text{Plug } x = 1 \Rightarrow 0 = y'(0) + \int_0^1 dx'' (1-x'') F(x'') \]

So we found \[y(x) = \int_0^x dx'' (x-x'') F(x'') - x \int_0^1 dx'' (1-x'') F(x'') \]
Summary of last lecture:

For a linear ODE, with homogeneous boundary conditions,

\[L[y](x) = S(x), \]

the solution can be written as

\[f(x) = \int dy \, G(x, y) \, S(y). \]

The function \(G(x, y) \) is the Green's function. For a given \(y \), it satisfies

\[L[G(x, y)](x) = \delta(y-x), \]

with appropriate boundary conditions.

We started working on the example \(f''(x) = S(x), \quad f(0) = 0 = f(1) \)

We solved this explicitly and found (different notation)

\[f(x) = \int_0^x dy \, (x-y) \, S(y) - x \int_0^1 dy \, (1-y) \, S(y). \]

Let us rewrite the first integral as

\[\int_0^1 dy \, (x-y) S(y) \, H(x-y), \]

where \(H \) is the Heaviside function.

\[\Rightarrow \text{We therefore found the Green's function:} \]

\[f(x) = \int_0^1 dy \, G(x, y) \, S(y), \quad G(x, y) = (x-y) \, H(x-y) - x \, (1-y) \]

\[\Rightarrow \text{For } x < y: \quad G(x, y) = -x \, (1-y) \]

\[\text{For } x > y: \quad G(x, y) = x-y - x+y = -y \, (1-x) \]

\[G(0, y) = G(1, y) = 0, \]

as it should.
Let's check that G indeed solves the coned ODE:

\[\frac{\partial G}{\partial x} = H(x-y) + (x-y) H'(x-y) - (1-y) = H(x-y) + (x-y) \delta_d(x-y) - (1-y) \]

Now $(x-y) \delta_d(x-y) = 0$ everywhere (including at $x=y$!) \[\Rightarrow \frac{\partial G}{\partial x} = H(x-y) - (1-y) \]

Expressing: \[\frac{\partial G}{\partial x} = \begin{cases} - (1-y) & [x<y] \\ y & [x>y] \end{cases} \]

This makes sense: $G(x,y)$ has a constant slope for $x<y$ and $x>y$.

\[\frac{\partial^2 G}{\partial x^2} = H'(x-y) = \delta_d(x-y) \]

\[\Rightarrow G \text{ satisfies } \mathcal{L}[G(x,y)]|_{x} = \delta_d(x-y) \text{, and boundary cond.} \]

Going the other way around:

We seek the function $G(x,y)$ that solves

\[\frac{\partial^2 G}{\partial x^2} = \delta_d(x-y) \quad \Rightarrow G(0,y) = 0 = G(1,y) \]

For $x=y$, this is $\frac{\partial^2 G}{\partial x^2} = 0$.

\[\Rightarrow G(x,y) = \begin{cases} A + B x & x<y \\ C + D x & x>y \end{cases} \]

To find the constants:

\[G(0,y) = 0 \Rightarrow A = 0 \]
\[G(1,y) = 0 \Rightarrow C + D = 0 \]

The constants A, C and B, D need not be the same!
So we have \(G(x,y) = \begin{cases} \frac{B}{x} & x < y \\ C(1-x) & x > y \end{cases} \) (1)

Go back to \(\frac{\partial^2 G}{\partial x^2} = \delta_D(x-y) \) and integrate between \(y-f \) and \(y+f \):

\[
\int_{y-f}^{y+f} dx \frac{\partial^2 G}{\partial x^2} = \int_{y-f}^{y+f} dx \delta_D(x-y) = 1
\]

\[
= \frac{\partial G(x,y+f,y)}{\partial x} - \frac{\partial G(x,y-f,y)}{\partial x}
\]

From (1), we have \(\frac{\partial G}{\partial x} = \begin{cases} \frac{B}{x} & x < y \\ -C & x > y \end{cases} \)

From the jump condition: \(-C - B = 1 \implies C = -(1+B)\)

Now, while \(\frac{\partial G}{\partial x} \) can have a jump (because \(\frac{\partial^2 G}{\partial x^2} \propto \delta_D \)), \(G \) itself must be continuous at \(x = y \). Otherwise \(\frac{\partial G}{\partial x} \) would be proportional to \(\delta_D(x-y) \) (and we know it is not!).

\[
\implies \text{ From (1), } BY = C(1-y)
\]

Solving \(\begin{cases} C = -(1+B) \\ BY = C(1-y) \end{cases} \implies \begin{cases} B = -(1-y) \\ C = -y \end{cases} \)

So we find \(G(x,y) = \begin{cases} -(1-y)x & x < y \\ -y(1-x) & x > y \end{cases} \)

This is indeed the same Green's function we had found earlier!