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ABSTRACT

We measure the mass function of dark matter halos in a latge sellisionless cosmological simulations
of flat ACDM cosmology and investigate its evolutionzg§ 2. Halos are identified as isolated density peaks,
and their masses are measured within a series of radii émglepecific overdensities. We argue that these
spherical overdensity masses are more directly linkedustet observables than masses measured using the
friends-of-friends algorithm (FOF), and are thereforefignable for accurate forecasts of halo abundances. Our
simulation set allows us to calibrate the mass functiom a0 for virial masses in the range 4#0h™* M,
<M <10 h Mg to < 5%, improving on previous results by a factor of 2-3. We defitting functions for
the halo mass function in this mass range for a wide range efdewsities, both &= 0 and earlier epochs.
Earlier studies have sought to calibrate a universal masgian, in the sense that the same functional form
and parameters can be used for different cosmologies astiifesdwhen expressed in appropriate variables.
In addition to our fitting formulae, our main finding is thatetimass function cannot be represented by a
universal function at this level or accuracy. The amplitofithe “universal” function decreases monotonically
by ~ 20-50%, depending on the mass definition, frem0 to 25. We also find evidence for redshift evolution
in the overall shape of the mass function.

Subject headingosmology:theory — methods:numerical — large scale streaif the universe

1. INTRODUCTION veys, we must be able to make accurate predictions for abun-

Galaxy clusters are observable out to high redshift (- dance evolution as a function of cosmological parameters.
2), making them a powerful probe of cosmology. The large . Traditionally, analytic models for halp abyndance as afunc
numbers and high concentration of early type galaxies maketon of mass, har\1/e l?]een Useo_' for estlm?tmg e>.(pected ek\]/olu-
clusters bright in optical surveys, and the high intracuggs 30”_ (Press & EC hec ter 1974; Bond et ah. 19%1’| Leeh&l Shan-
temperatures and densities make them detectable in X-thy andarin 1998; Sheth & Tormen 1999). Such models, while con-
through the Sunyaev-Zel'dovich (SZ) effect. The evoluiagn ~ VENient to use, require calibration against cosmologicalls
their abundance and clustering as a function of mass is-sensilations. In addition, they do not capture the entire comipfex
tive to the power spectrum normalization, matter contemd, a  ©f halo formation and their ultimate accuracy is likely iffsu
the equation of state of the dark energy and, potentiatly, it C/€ntfor precision cosmological constraints. A precisiass
evolution (e.g., Holder et al. 2001; Haiman et al. 2001; éfell functhn can most directly be achieved through explicit-cos
et al. 2002; Majumdar & Mohr 2003). In addition, clusters Mological simulation. o
probe the growth of structure in the Universe, which progide _ 1 N€ Standard for precision determination of the mass func-
constraints different from and complementary to the geemet fion from simulations was set by Jenkins et al. (2001) and

; ; Evrard et al. (2002), who have presented fitting function for
ric constraints by the supernovae type la (e.g., Albrecht.et _
2006). In particular, the constraints from structure growt the halo abundance accuratetd0-20%. These studies also

may be crucial in distinguishing between the possibilipes ~ Snowed that this function was universal, in the sense tieat th
the cosmic acceleration driven by dark energy or modificatio same function ar)d parameters could be used to predict halo
of the magnitude-redshift relation due to the non-GR gyavit 2Pundance for different redshifts and cosmologies. Warren
on the largest scales (e.g., Knox et al. 2005). et al. (2006) haye further improved the calibrationatcb%

The potential and importance of these constraints have mo-2ccuracy for a fixed cosmology at 0. Several other stud-
tivated current efforts to construct several large sunafys €S have tested the universality of the mass function at high
high-redshift clusters both using the ground-based dptica €dshifts (Reed et al. 2003, 2007; Lukic et al. 2007; Cohn &

and Sunyaev-Zel'dovich (SZ) surveys and X-ray missions in White 2007). . :
space. Ir¥orderto realize(the)full stat)i/stical powe¥of thesr- One caveat to all these studies is that the theoretical sount

as a function of mass have to be converted to the counts as
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cluster mass and whether evolution of this correlation with veys.

time is sufficiently simple (e.g., Lima & Hu 2005). The paper is organized as follows. In § 2 we describe our
Tight intrinsic correlations between X-ray, SZ, and ogtica simulation set and SO algorithm. In 8 3 we present results for

observables and cluster mass are expected theoretically (e the mass function, demonstrating how our results depend on

Bialek et al. 2001; da Silva et al. 2004; Motl et al. 2005; Naga cosmology and redshift. In § 4 we summarize and discuss our

2006; Kravtsov et al. 2006) and were shown to exist obser-results.

vationally (e.g., Mohr et al. 1999; Lin et al. 2004; Vikhlmi Throughout this papewe use masses defined within radii

et al. 2006; Maughan 2007; Arnaud et al. 2007; Sheldon et al.enclosing a given overdensity with respect to the mean gensi

2007; Zhang et al. 2008) in the case when both observable®f the Universe at the epoch of analysis.

and masses are defined within a certsphericalradius en-

closing a given qverdensity. The majori_ty of the mass fuorcti 2 METHODS
calibration studies, however, have calibrated the mass-fun . ,
tion with halos and masses measured using the friends-of- 2.1. Simulation Set

friends (FOF) percolation algorithm. This algorithm is €ffi Table 1 lists our set of simulations. All the simulations are
cient, straightforward to implement, and is therefore @bppe based on variants of the flatCDM cosmology. The cosmo-
ing computationally. The FOF algorithm does not assume anylogical parameters for the majority of the simulations rfle
geometry for the halo. This is advantageous given that halosthe zeitgeist of the first-year WMAP results (Spergel et al.
have varied shapes. However, the relation between the FOR2003). We will refer to this cosmology as WMAP1. A smaller
masses and observables is quite uncertain. number of simulations have cosmological parameters closer
As we show below (see 8§ 2.3 and Fig. 2), there is large, to the three-year WMAP constraints (Spergel et al. 2007), in
redshift-dependent, and asymmetric scatter between tiie FO which bothQ,, andog are lower and the initial power spec-
mass and mass measured within a spherical overdensitytrum contains significant tilt ofi = 0.95. This subset of simu-
which implies that there is also large asymmetric scatter be lations are not of the same identical parameter set, buérath
tween the FOF mass and cluster observables. This does natepresent slight variations around a parameter set weafat r
bode well for self-calibration of such relations. Furthers to globally as WMAP3.
there is no way to measure the equivalent of the FOF mass The largest simulation by volume followed a cubic box of
in observations, which means that any calibration of the FOF1280h™ Mpc size. There are fifty realizations of this simu-
mass and observables will have to rely on simulations. An |ation performed with the GADGET2 code (Springel 2005),
additional issue is that halos identified with an FOF algionit ~ which have been kindly provided to us by R. Scoccimarro.
may not have one-to-one correspondence to the objects idenwith the exception of these 1280 Mpc boxes, the initial
tified in observational surveys. For example, the FOF finder conditions for all simulations were created using the stan-
is known to join neighboring halos into a single object efeni dard first-order Zel'dovich approximation (ZA). Crocce &t a
their centers are located outside each others virial r&dich (2006) point out possible systematic errors in the resyltin
objects, however, would be identified as separate systems irmass function if first-order initial conditions are startesuf-
X-ray and SZ surveys. ficiently early. Using second order Lagrange perturbaten t
Although no halo-finding algorithm applied on simulations ory (2LPT) to create initial conditions, they identify disp-
containing only dark matter may be perfect in identifyingy al ancies between the halo mass function from their simulation
systems that would be identified in a given observational sur and that of Warren et al. (2006) at the highest masses. In War-
vey, the spherical overdensity (SO) halo finder, which iden- ren et al. (2006), several boxes larger than F68Vipc were
tifies objects as spherical regions enclosing a certain-over utilized in the analysis that are not listed in Table 1. Irges
density around density peaks (Lacey & Cole 1994), has sig-with our spherical overdensity halo finder, we find a discrep-
nificant benefits over the FOF both theoretically and obser-ancy between the 2LPT simulations and these simulations. At
vationally. Most analytic halo models (see, e.g., Cooray & this point, it is not yet clear whether the discrepancy is ue
Sheth 2002, for review) assume that halos are spherical, andhe effect advocated by Crocce et al. (2006) or due to other
the statistics derived are sensitive to the exact halo diefini  numerical effects. We explore the issue of initial startied-
To be fully self-consistent, the formulae for halo propesti  shiftin some detail in the Appendix A. What is clear, however,
halo abundance, and halo bias, on which the calculatiops rel is that results of these simulations systematically deviam
should follow the same definition. The tight correlations be other higher resolution simulations, especially for langa-
tween observables and masses defined within spherical apetses of overdensities. We therefore do not include them in our
tures means that connecting observed counts to theoreticahnalyses.
halo abundances is relatively straightforward and robAst. The first five simulations listed in Table 1 were used in War-
the same time, the problem of matching halos to observedren et al. (2006) in their analyses. The integrations were pe
systems is considerably less acute for halos identifiednaou formed with the Hashed Oct-Tree (HOT) code of Warren &
density peaks, compared to halos identified with the FOF al-Salmon (1993). Additionally, there are two HOT simulations
gorithm. in the WMAP3 parameter set. These simulations will be re-
Thus there is substantial need for a recalibration of theferred to in the text by their box size, imMpc, prefixed
halo mass function based on the SO algorithm for a rangeby the letter ‘H’. Simulations in the WMAP3 set will be ap-
of overdensities probed by observations and frequentlg use pended with the letter 'W'. Due to identical box sizes between
in theoretical calculations~ 200—2000). Such calibra- parameter sets, H384 will refer to the WMAP1 simulation,
tion for the standard\CDM cosmology is the main focus H384W will refer to the simulation with WMAP3 parame-
of this paper. Specifically, we focus on accurate calibra- ters, and H38@ will refer to the low{), simulation (which
tion of halo abundances for intermediate and high-masshalo we will include in the WMAP3 simulation subset).
(~ 10-10"h1M,) over the range of redshiftz (& 0-2) There are six simulations using the Adaptive Refinement
most relevant for the current and upcoming large cluster sur Technique (ART) of Kravtsov et al. (1997), and four that use



FiGc. 1.— A graphical key for the list of simulations in Table 1. Tuygper panel shows point styles for all the WMAP1 simulatioreoed by the box size. Each
simulation is represented with a different color, while éiéint point types represent different numerical codestesirtiOT, squares=ART, triangles=GADGET2.
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The lower panel plots all WMAP3 simulations, as well as H8the low-{2, simulation. See Table 1 for the details of each simulation.

TABLE 1
PROPERTIES OF THESIMULATION SET
Looxh™*Mpc  Name ehlkpc Np mp Mg (Qm, Qp, 08,h,n) Code Z Zout Amax
768 H768 25 1024  3.51x 10 (0.3,0.04,0.9,0.7,1) HOT 40 0 800
384 H384 14 1024 4.39x 10° (0.3,0.04,0.9,0.7,1) HOT 48 0 3200
271 H271 10 1022 1.54x10° (0.3,0.04,0.9,0.7,1) HOT 51 0 3200
192 H192 49 1024 5.89x 108 (0.3,0.04,0.9,0.7,1) HOT 54 0 3200
96 H96 1.4 1022  6.86x 107 (0.3,0.04,0.9,0.7,1) HOT 65 0 3200
1280 L1280 120 640  599x 101 (0.27,0.04,0.9,0.7,1) GADGET2 49 0,05,1.0 600
500 L500 15 102%x2 824x 10° (0.3,0.045,0.9,0.7,1) GADGET2 40 0,05,1.25,25 3200
250 L250 7.6 512  9.69x 10° (0.3,0.04,0.9,0.7,1) ART 49 0,05,1.25,25 3200
120 L120 1.8 512  1.07x10° (0.3,0.04,0.9,0.7,1) ART 49 0,05,1.25,25 3200
80 L80 1.2 513 3.18x 108 (0.3,0.04,0.9,0.7,1) ART 49 0,05,1.25,25 3200
1000 L1000W 30 102 6.98x 100 (0.27,0.0440.79,0.7,0.95) ART 60 0,05,1.25 25 3200
500 L500Wa 15 5192 620x 100 (0.24,0.0420.75,0.73,0.95) GADGET2 40 0 3200
500 L500Wb 15 512x2 620x 100 (0.24,0.0420.750.73,0.95) GADGET2 40 0 3200
500 L500Wc 15 513x2 620x 100 (0.24,0.0420.8,0.73,095) GADGET2 40 0 3200
384 H384W 14 1024  3.80x10°  (0.26,0.044,0.75,0.71,0.94) HOT 35 0 3200
384 H384)n 14 1024  2.92x10° (0.2,0.04,0.9,0.7,1) HOT 42 0 3200
120 L120W 0.9 10234  1.21x10®  (0.27,0.0440.79,0.7,0.95) ART 100 1.25,25 3200
80 L8OW 1.2 513 244%x10°  (0.23,0.04,0.75,0.73,0.95) ART 49 0,05,1.2525 3200

NoTE. — The top set of 5 simulations are from the Warren et al. (2806}y. The second list of 5 simulations are of the same WMAP1 clogipo
but with different numerical codes. The third list of 8 simidas are of alternate cosmologies, focusing on the WMAP3 pamarset. The HOT
code employs Plummer softening, while GADGET employs splineeagfg. The values of listed for the GADGET simulations are the equivalent
Plummer softening; when calculating the spline softening&eIGADGET uses a value of 4The force resolution of the ART code is based on the
size of the grid cell at the highest level of refinemefitnax is the highest overdensity for which the mass function can oreddirectly. Above this
A, halo mass are inferred from the rescaling procedure in @dsaphical key of this table is shown in Figure 1.

GADGET2 in addition to the L1280 realizations. The L80 dark matter and SPH gas particles (without cooling). The
and L120 ART boxes modeling the WMAP1 cosmology are ART and GADGET2 simulations will be referred by their box
described in Kravtsov et al. (2004) and L250 simulation is de size with prefix ‘L. WMAP3 simulations have a ‘W’ as a suf-
scribed by Tasitsiomi et al. (2008, in preparation), while t  fix.
three WMAP3 boxes are presented here. The L500 simula- Our simulation set comprises three different N-body codes,
tions are described in Gottldber & Yepes (2007) and Yepesone based on the popular tree algorithm (HOT), one based
et al. (2007y. These simulations contain equal numbers of on grid codes with small-scale refinement of high-density re
gions (ART), and one that combines grid and tree algorithms
9 see also http://astro.ft.uam.es/marenostrum/universintnl
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(GADGET2). We present a key in Figure 1 that graphically these objects as distinct structures. This is in accord M4th
displays the range of box sizes. Each simulation is repre-ray or SZ observations which would identify and count such
sented by a different color, while different point typeseretb objects as separate systems. The overlapping volume may
different simulation codes: circles for HOT, squares forTAR  contain particles. Rather than attempt to determine which
and triangles for GADGET2. These point symbols and colors halo each particle belongs to, or to divide each particle be-

will be used consistently in the figures below. tween the halos, the mass is double-counted. No solution
to this problem is ideal, but we find that the total amount of
2.2. Halo Identification double-counted mass is only0.75% of all the mass located

dWithin halos, with no dependence on halo mass. This paral-
lels the treatment of close pairs of clusters detected waser
tionally. When two X-ray clusters are found to have overlap-
ping isophotal contours, each system is treated indivigual

The standard spherical overdensity algorithm is describe
in detail in Lacey & Cole (1994). However, in our approach
we have made several important modifications. In Lacey &
Cole (1994) the centers of halos are located on the center o X ;
mass of the particles within the sphere. Due to substructure 219 do“blﬁ corntln%ofrznaﬁslw¥_l %ccu.r as W‘?”d dentl
this center may be displaced from the main peak in the density, Flor eac fva ue o, t eb' aodl_n g_r IS r?n .'Q hegeln. ?‘;‘)t Y-
field. Observational techniques such as X-ray cluster ident alo mass functions are binned In bins of width 0.1 inMg

fication locate the center of the halo at the peak of the X-ray With N0 smoothing. Errors on each mass function are obtained
flux (and therefore the peak of density of the hot intraclus- :)y Ehe Ja(;:':ﬁmfe method; eﬁCh smg!atl_on ;;d_lw%e;jhlnto ﬂct_h
ter gas). Optical cluster searches will often locate thstelu ants and the error on each mass bin 1S obtained through the

center at the location of the brightest member, which is aISOvariance of the halo number counts as each octant is removed

expected to be located near the peak of X-ray emission (Linfrom the full simulation volume (cf. Zehavi et al. 2005, equa

et al. 2004; Koester et al. 2007; Rykoff et al. 2008). Thus we go?h[fh])' The_jackknife err?]r_shpcrjoviQe ? robtulst estimate of d
locate the centers of halos at their density peaks. 0 € cosmic variance, which dominates at low masses, an

Our halo finder begins by estimating the local density }?e ?0'55(2)80';0]!58 tr;ﬁt dolmtmates att_glgt_h masfses (hsee Hu &
around each particle within a fixed top-hat aperture with ra- " avSOV or a the re;ative contributions of each seurc

: ; : ; f error as a function of halo mass).
dius approximately three times the force softening of each® > . .
simula?ign. Begin};ﬂng with the highest-density pgrtiche, When fitting the data, we only use data points with error

sphere is grown around the particle until the mean interior P2rs 1€ss than 259% to reduce noise in the fitting process. We
density is equal to the input value df, where A is the note that.mass bins will be correlated (low-mass bins more
overdensity within a sphere of radilRa with respect to  S° than high mass ones). We do not calculate the full covari-
the mean density of the Universe at the epoch of analysis 2NC€ Matrix of each mass function, so fffevalues obtained
52 = () peit(2) = pm0)(1+2)%: from the fitting procedure should be taken as a general guide
fm of goodness of fit, but not as an accurate statistical measure
_ Ma However, we note that the data from multiple simulations in
- m' (1) each mass range will be uncorrelated, and the lack of a eovari
ance matrix should not bias our best-fit values for the mass
All values of A listed in this paper are with respectpg(2). function.
Since local densities smoothed with a top-hat kernel are .
somewhat noisy, we refine the location of the peak of the 2.3. Comparison of FOF and SO halos
halo density with an iterative procedure. Starting withara Cole & Lacey (1996), and later White (2001, 2002),
dius ofr = Ra /3, the center of mass of the halo is calculated demonstrated that there is scatter between the masses of ha-
iteratively until convergence. The value iofs reduced iter-  |os identified with the FOF and SO halo definitions, as well
atively by 1% and the new center of mass found, until a fi- as an offset between the mean halo masses using the canoni-
nal smoothing radius dR» /15, or until only 20 particles are  cal values of the linking length= 0.2 in the FOF algorithm
found within the smoothing radius. At this small apertun& t  and overdensity\ = 200 in the SO approach. Figure 2 com-
center of mass corresponds well to the highest density feak opares the masses of halos identified with these two defisition
the halo. This process is computationally efficient and €lim for three different simulations. Halos in a simulation arstfi
inates noise and accounts for the possibility that the ahose identified with our SO approach, then the FOF finder is sub-
initial halo location resides at the center of a large suigstr  sequently run, beginning at the center of the SO halo. Figure
ture; in the latter case, the halo center will wander towhed t  2a compares\ = 200 tol = 0.2. The symbols represent the
larger mass and eventually settle on its center. Once the newnedian mass ratioy = Mao/Mror2 as a function oMaqq.
halo center is determined, the sphere is regrown and the mas¥he curves represent the upper and lower 90% bounds on the
is determined. distribution of mass ratios. Although the median is neatyini
All particles within Ry are marked as members of a halo the scatter is large and highly asymmetric.
and skipped when encountered in the loop over all parti- The asymmetry in the distribution is due to the FOF algo-
cle densities. Particles located just outside of a halo @&n b rithm linking two or more distinct objects in close proximit
chosen as candidate centers for other halos, but the ¥erati to each other. Because we allow halos to overlap, FOF will
halo-centering procedure will wander into the parent halo. treat these halos as a single object. Due to the arbitragesha
Whenever two halos have centers that are within the largerof FOF halos, the algorithm also links SO objects that do not
halo’sRa, the halo with the largest maximum circular veloc- overlap. The median mass ratio is also sensitive to the num-
ity, defined as the maximum of the circular velocity profile, ber of particles per halo; FOF halos are known to be biased
Ve(r) = [GM(< r)/r]¥?, is taken to be the parent halo and the toward higher masses at low particle number (Warren et al.
other halo is discarded. 2006). This occurs because the linking length becomes com-
We allow halos to overlap. As long as the halo center doesparable to the density scale length at the outskirts of lolaN
not reside withirRa of another halo, the algorithm identifies los. The scatter between mass definitions is not alleviaged b
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FIG. 2.— Comparison between spherical overdensity masses amdi$riof-friends masses for the same sample of objects from,H250, and L1000W.
Panel (a) compares the masseaof 200 halos to FOF halos with= 0.2. The symbols represent the median mass ratio, for objectedioyM,qo. The curves
show the upper 90% and lower 10% bounds of the distributiomass ratios in eackl,g bin: solid for H384, dashed for L250, and dotted for L1000WeT
asymmetry in the mass ratio distribution reflects the tendeh&0& to link objects together. Panel (b) compases 1600 halos to FOF objects with= 0.1.
Panel (c) shows the distribution of mass ratims= M2oo/Meor2, for halos 13< log Mg < 14 (solid line). The long tail of the distribution aiy < 0.5 indicates
SO halos that are linked with other virialized objects in B@F halo-finding process. The dotted line is the same distoib@tz = 1.25. Panel (d) shows the
distribution ofry for the same mass range, for the= 1600 and and FOF linking length= 0.1. Solid and dotted lines ars= 0 andz = 1.25, respectively. Both
panels (c) and (d) show results for the L250 run.

making the linking length smaller. This is shown in Figure 2b errors in FOF halos depend on the linking length. We find
in which the same results are shown for 1600 and = 0.1. that (1-N,°®) is sufficient to remove the FOF bias fior 0.1.

The median is once again near unity, and the scatter remain&igures 2c and 2d show the distribution of mass ratios for ha-
identical. We note also that there is an offset in the med&an b  los between 18 and 16* h™*M, for one of the simulations.
tween simulations as well; the results from L1000W-arg% The solid histograms present resultszat 0 and the dotted
lower than the other simulations lat 0.2 and~ 10% lower histograms is for = 1.25. Both thez= 0 histograms exhibit a
atl = 0.1. This offset is not due to the change in cosmology large, constant tail to low ratios. At higher redshift, ttsg -
between the L1000W and the other simulations, therefore itmetry of P(ryy) becomes even stronger. The correlation be-

must be a result of the lower mass resolution. tween spherically-defined masses and the FOF masses is thus
We find that the curvature in the median mass ratio is alle- broad and evolves with redshift.
viated when adjusting the mas9dgsor, by the Warren et. al. Within thez= 0.5 output of the L1000W simulation, we find

correction formula, (£N;%°), whereN, is the number of par- ~ 21% moreM > 10** h™*M, | = 0.2 FOF halos tham\ = 200
ticles in a halo. However the curvature is not entirely amel  objects at the same mass cut. Predicting the abundance of
rated by this formula at= 0.1, demonstrating that the mass higher-overdensity objects usithg 0.2 FOF objects leads to
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FiG. 3.— The halo density profiles are compared to analytic ptiedis
for three different simulations. In each panel, the dottedevepresents the
mean interior density given by an NFW profile witfM) from Dolag et al.
(2004). The shaded region is the expected scatter assutgijag= 0.12. The
solid curves with errorbars represent the numerical resuitse left panel
shows results from H384 for all haldg > 104° h™ M. The center and
right panels show results for halds > 10*> h™*Mg. The center and left
panel demonstrate that halo profiles are well resolved iretBgaulations.
The right panel, shows significant deviations from the etg&lFW profile
atr < 0.1Rpg in the lower-resolution L1280 simulation.
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FIG. 4.— Test of the resolution of the large-volume simulationS0Q,
L1000W, and one realization of L1280. In each panel, the masstibns
are plotted as residuals with respect to the best{fit) function from Ta-
ble 2. The symbols represent the mass functions measurediyifieeh
the simulations at each. The curves are mass functions inferred from the
A =200 halo catalog of each simulation, where the mass of 2aeh200
halo is scaled to higher overdensities assuming an analyti KMalo (in-
cluding scatter in concentrations at fixed mass). For the fglodn resolution
simulations, the scaled and true mass function are in agreereetto in-
sufficient resolution, the L1280 mass function falls below #taled mass
function at highA.

larger errors. A simple rescaling of the masses of the FOF
halos toA = 1600 by assuming NFW density profiles (see the
discussion in the following subsection) leads to an oveligre
tion of the number of objects &fl > 10** h™ M, by ~ 80%.
These discrepancies become larger for higher redshiftisehi
halo mass thresholds, and higher overdensities.

This has significant implications for comparisons with ob-
servational cluster counts. Given that cluster obsergable
correlate strongly with the spherical overdensity mastes,
large scatter betweeM o and Meof indicates that the FOF
correlation will be weaker. If one is to use a halo mass func-
tion calibrated against halos and masses identified with the
FOF algorithm, a significant additional effort would be re-
quired to calibrate the scatter between FOF masses and ob-
servables as a function of redshift, mass, and cosmology. In
addition, this calibration will have to rely solely on thetical
modeling, because the mass equivalent to the FOF cannot be
directly measured in observations. The use of the halo abun-
dance predictions made with the spherical overdensity-algo
rithm is therefore strongly preferred.

2.4. Accounting for effects of resolution

Defining the halo masses within a radius enclosing a given
overdensity stipulates that the halo mass is the integdsgaed
sity profile within a fixed radius. This means that the mass
depends on the internal density distribution of the hala an
is thus more susceptible to the effects of resolution. The
FOF masses, on the other hand, are measured within a given
isodensity surface, and are therefore less sensitive tinthe
ternal mass distribution. For example, Lukic et al. (2007)
demonstrate that a reasonable FOF mass function can be ob-
tained through a low-resolution simulation with as littke &
timesteps. If the same simulation is performed twice with di
ferent resolutions, the same density peak in the lower wesol
tion simulation will have a shallower density profile andlwil
in general have a different measured mads, The resultis a
systematic artificial shift in the estimated halo mass fiamct
This effect will be larger for larger values df; as the radius
Ra of a halo becomes smaller, the finite force resolution of
the simulation will have a larger impact on the inferred mass

To measure the SO mass function reliably at highwe
test whether the halo density profiles are properly resaived
each of the analyzed simulations at the overdensity in ques-
tion. Figure 3 illustrates one of the resolution tests that w
performed. It compares the halo density profiles from simu-
lations to the expected profiles. For the latter we use the wel
tested Navarro et al. (1997) profile (hereafter NFW) with the
concentration for a given mass measured in high-resolution
simulations by Dolag et al. (2004)and a scatter in concen-
tration of 0.12 in log. In this figure we show examples of
one HOT simulation (H384), one ART simulation (L1000W),
and one GADGET2 simulation (L1280). The HOT and ART
simulations have force resolutions of 14 andI8bkpc, re-
spectively, which is well within the scale radius of a typi-
cal cluster-sized halo. The results for both the mean pro-
file and its scatter are in excellent agreement with the NFW
profile. The L1280 simulation has a force resolution of 120
h™lkpc, and deviations from the expected profile become clear
atr < 0.1Rygo. These differences will propagate into the esti-

10 cr00(M) = 9.59 x (M/10%)70192 normalized to the WMAP1 cosmol-
ogy. When changing cosmology, we shift the normalization ugtegfrac-
tional change in concentration from the Bullock et al. (20@iodel at
M=108h1Me.



mate of the mass function if they are not taken into account. log(1/0)

The results of comparisons similar to those shown in Figure -0.64 -0.52 -0.38 -0.21 -0.01 024 055
3 clearly identify which radii and which simulations profile H I L I B
are affected by resolution. These results can then be used to -1 . .

determine the range of overdensities for which masses can be
measured reliably in a given simulation. This is illustchie
Figure 4, which shows the mass functions from three differen
simulations at four values ak. The mass functions are plot-

ted relative to the best-fit mass functions at eAghvhich are
described in more detail below in § 3. At each overdensity we
compare the mass functions measured in simulations to mass
functions obtained by taking the individual halos foundhgsi

the SO halo finder withA = 200 and rescaling their masses
assuming the NFW profile, taking into account scatter in con-
centrations (see, e.g., White 2001; Hu & Kravtsov 2003). We
use the concentration-mass relation and scatter measired d
rectly from our simulations (Tinker et. al., in preparajion
The figure shows that the measured and re-scaled mass func-
tions are in good agreement for < 800, where the scaled- I
up mass function isv 5% higher than the true mass func- PSP I PN I RV | P I
tion. This error is accrued from the halos located witR}go, 10 11 12 13 14 15 16

which can become separate halos for higher overdensities an log[M/(h™1 M,)]

are not accounted for in the rescaling process.

At h.lgher overdensities, the agreemem IS markedly Vllorse’ FIG. 5.— The measured mass functions for all WMAP1 simulations; plot
especially for the Iower-resoluthn L,1280 boxes,' At= ted as 12/ pm)dn/dM against logM. The solid curves are the best-fit func-
1600, the measured mass function is underestimatee by tions from Table 2. The three sets of points show results¥or 200, 800,
10%, increasing te~ 20% atA = 3200. Therefore, for this  and 3200 (from top to bottom). To provide a rough scaling betvi and
simulation we use the directly-measured mass function onlyo™, the top axis of the plot shows™ for this mass range for the WMAP1
atA < 600, while at higher we calculate the mass function ~ S0SmoiogY. Tie SI ofiset bewisen e F1280 results aecbed curves
by mass re-scaling using halos identified with an overdgnsit
A =600. A scaling baseline of lofigh/ Aiow) < 0.9 accrues
only < 2% error in the amplitude of the mass function at these
masses. Thus the rescaled halo catalogs are reliable for cal et al. (2006). Following these studies, we choose the fellow
brating the halo mass function at high overdensity. This pro ing functional form to describe halo abundance in our simula
cedure is used to measure highmass functions for L768  tions:

(for A > 800) and L1280 (forA > 600). dn _ (o) Pm ding™ @

At A =200 we choose a conservative minimum value of no dm M dM
less than 400 particles per halo. Below this value resaiutio |, o ended Press-Schechter theory, the overdensity at a lo
effects.become.appar(_ant, and S|mu]at|0ns .W'th dlﬁgr|n§3na cation in a linear density field follows a random walk with
resolutions begin to diverge. This is readily seen in the SO decreasing smoothing scale. The functibf) is the o-

mass functions analyzed in Jenkins et al. (2001). At higher, oianted distribution of first-crossings of these randortkera
A, halos are probed at significantly smaller radii, and the res , <o 5 harrier separating collapsed objects from urpseith
olution requirements are more stringent. Thus at higher regions (egd > &c). The functionf(¢) is expected to be uni-

we increase the minimum number of particles such that, at ; : : )
A = 3200, Nmin is higher by a factor of 4. Exact values for \é?é?;ggg;e changes in redshift and cosmology and is param

each overdensity are listed in Table 2. f(o)=A {(g)‘ﬂ 1} ac/o?

log[(M/7,,) dn/dM]

©)
3. HALO MASS FUNCTION where
3.1. Fitting Formula and General Results o2 = /P(k)\fV(kR)kZdK ()

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of thendP(k) is the linear matter power spectrum as a function of
power spectrum, successful analytical ansatzes predict th\yayenumbek, andW is the Fourier transform of the real-
halo abundance quite accurately by using a universal func-gnace top-hat window function of radiBs It is convenient to
tion describing the mass fraction of matter in peaks of agive ¢4 that the matter variance monotonically decreaséis wi
height, v = 6c/5(M, 2), in the linear density field smoothed jycreasing smoothing scale, thus highér corresponds to
at some scal® = (3M/4np,)"/® (Press & Schechter 1974; |ower . In the figures and text, we will use log! as the
Bond et al. 1991; Sheth & Tormen 1999). Hefg~ 1.69is  independent variable. This quantity increases monottpica
a constant corresponding to the critical linear overdgrisit with halo mass.
collapse and(M, 2) is the rms variance of the linear density ~ The functional form (3) was used in Warren et al. (2006),
field smoothed on scalR(M). The traditional nonlinear mass  with minor algebraic difference, and is similar to the forms

scaleM,. corresponds to = dc. This fact has motivated the  ysed by Sheth & Tormen (1999)and Jenkins et al. (2001).
search for accurate universal functions describing sitimria

results by Jenkins et al. (2001), White (2002), and Warren ! A convenient property of the Sheth & Tormen mass function isdha
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FiG. 6.— Panel (a): The measuré¢) from all simulations in Table 1. Results are presentexiad and forA = 200. The solid line is the best fit function of
equation (3). The lower window shows the percentage reksiduiéh respect to the fitting function. In the WMAP1 cosmolothg range on the data points on
thex-axis is roughly 18°5 ™M to 10'>% h"IM,. Panel (b): The measureido) atz= 1.25. We restrict results to simulations for which we have presi
redshift outputs. In the WMAP1 cosmology, the range of datatgain thex-axis is 131 h™* Mg, to 101> ™M . The solid line is the same as in panel (a),
which was calibrated a= 0. The lower window shows that ttze= 1.25 mass function is offset by 20% with respect to the resultszt 0.

Parameterd\, a, b, andc are constants to be calibrated by
simulations. The parametér sets the overall amplitude of
the mass function, whila andb set the slope and amplitude
of the low-mass power law, respectively. The parameter

Figure 5 shows the mass function measured for three values
of A and the corresponding best fit analytic functions. We plot
(M2?/pm)dn/dM rather thandn/dM to reduce the dynamic
range of they-axis, asdn/dM values span nearly 14 orders

determines the cutoff scale at which the abundance of halosof magnitude. The figure shows that Asincreases the halo

exponentially decreases.

masses become systematically smaller. Thus ffom 200

The best fit values of these parameters were determinedo 3200, the mass scale of the exponential cutoff reduces sub

by fitting eq. (3) to all thez = 0 simulations using¢® mini-
mization and are listed in Table 2 for each valuefaf For

A > 1600, we fix the value oA to be 0.26 without any loss of
accuracy?. This allows the other parameters to vary mono-
tonically with A, allowing for smooth interpolation between
values ofA.

recovers the mean matter density of the universe when integraver all
mass; the function is normalized such ttfat(a)dlna‘1 =1. Equation (3)
does not converge when integrating to 46¢ = —co. In Appendix C we
present a modified fitting function that is properly normalizedall A but
still produces accurate resultszt 0.

12 Although a four-parameter function is required to accuydiethe data
at low A, at high overdensities the error bars are sufficiently large a
degeneracy betweeghanda emerges, and the data can be fit with only three
free parameters, given a reasonable choicéfor

stantially. The shape of the mass function is also altered; a
A =200 the logarithmic slope at low masses-is1.85, while

at A =3200 the slope is nearly2. This change in slope is due

to two effects. First, the fractional change in mass when con
verting between values @k is not a constant; it depends on
halo mass. Because halo concentrations are higher foreamall
halos, the fractional change is higher at lower masses, thus
steepening the mass function.

Second, a number of low-mass objects witlfitgyy of a
larger halo are “exposed” as distinct halos when halos are
identified with A = 3200. Although all halos contain sub-
structure, these “revealed” subhalos will only impact a¥ler
abundance of objects at low mabt< 102 ™M, because
the satellite fraction (the fraction of all halos locatedhin
virial radii of larger halos) decreases rapidly freen20% to
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zero forM > 10'2 ™M, (e.g. Kravtsov et al. 2004). This is in good agreement with our results figr < 103 h™* M,
trend can be understood using average properties of sidbhalowhile at higher masses there are variationg-6+10%.
in parent CDM halos. Subhalo populations are approximately The solid curves in thel = 800 and 1600 panels are the
self-similar with only a weak trend with mass (e.g., Moore Jenkins SO(324) result scaled up to those overdensities. At
et al. 1999; Gao et al. 2004), and the largest subhalo typical logo™ > 0, the residuals increase, while at lower masses
has a mass ok 5-10% of the host mass. Thus, at a given the rescaledf(c) underestimates the numerical results by
massM only hosts with masses 10M can produce signifi-  5-10%. Both of these effects are due to subhalos becoming
cant number of new halos when halo identification at higher exposed when halos are identified using higher overdenity.
A is performed. At high masses, the number of such halosa high-mass halo contains a large subhalo, the rescalinrg pro
decreases exponentially with mass, and therefore theicontr cedure will overestimate the mass of that object at higker
bution of such “exposed” halos becomes small. At low masses, the rescaling procedure does not account for
Figure 6a shows the functiof{c) measured for all simu-  the revealed substructures. The change in mass &en200
lations in Table 1 az =0 with A =200. The solid curve is  to A = 1600 is~ 50% at 16* h"™*M,. If subhalos are dis-
equation (3) using the best-fit parameters from Table 2. Thetributed within parent halos in a similar fashion to the dark
residuals with respect to this fit demonstrate the high accu-matter, then the rescaling procedure should underestiimate
racy of our numerical results and the consistency of differe mass function by~ 0.5 x 0.2 = 0.1 (where 0.2 is the subhalo
codes, mass resolutions, and cosmologies. Figure 6b showfaction for low-mass halos from Kravtsov et al. 2004).
f(o) atz=1.25 for a subset of simulations for which higher  Figure 8 shows that the best fit parameter$(ef) vary with
redshift outputs are available. The solid curve represiwets A smoothly. This means that interpolating between these
results fromz= 0. At this redshift, the results at 20% below best-fit parameters can be expected to yield accurate mass
thez= 0 results, nearly independent of log. This demon-  function parameters at any desired overdensity. In Appendi
strates that the mass functiomistuniversal in redshift, or for B we show examples of the interpolated mass functions, as
correspondingly large changes in cosmol&tygt this level of well as fitting function for thef (¢) parameters as a function

accuracy. We address evolutionfqt) with zin 83.3 below. of A. The error bars aresland are obtained by marginalizing
over all other parameters. The errors on the amplitidee
3.2. Results as a function df ~ 3-4%, but this parameter is highly correlated witfand

) . . ) the true scatter about the bestffft) is < 1% at most masses.
The best-fit parameters of equation (3) resulting from fitsto  the jower panel in Figure 8 shows the rms scatter in our

all simulations for 9 values of overdensity are listed in Table ¢nstraints orf (). The scatter was calculated b

. ; S . . y bootstrap
2. Figure 7 shows the residuals of individual WMAPL simu-  esampling of the simulation set and repeating the fittirgg pr
lations with respect to global fits at differedt We include  a55 on 100 bootstrap samptésThe shaded area is the vari-
L1000W in these plots to show consistency between cosmolo-5ce of the bootstrap fits. The light gray region represents
gies at cluster masses. For the fifty realizations of L1280, W ogits for A = 200, while the dark gray region represents

plot the meanf(c) and the error in the mean. Each panel A -=1600. Between log™- =-0.2 and logr! = 0.2 the scat-
shows the fractional residuals of the measured mass funsctio iqy is |ess than 194\ = 1015 h"t M, and 185t M, for the

with respect to the best-fit(o) for four values ofA. Toavoid ~ \ypmaAP1 cosmology). Outside this mass range the results di-
crowding, error bars are plotted for the maximum and mini- yerge due to lack of coverage by the simulations. Because the
mum mass scale for every simulation; the latter is represeny\map1 simulations dominate by number, these constraints
tative of the cosmic variance given the finite simulation-vol gp61d be formally regarded as the accuracy of the fit for the
ume, while the former is dominated by Poisson noise. We \ynapP1 cosmology.

list formal values ofy“/v for our diagonal error bars in Ta-  Figure 9 compares the calibrated mass functions from Table
ble 2. The values in column 6 are for al= 0 simulations, 5 yith the measured mass functions from the WMAP3 sim-
while the value in column 8 is the”/v for the same param- jations (i.e., the last seven entries in Table 1). Columii 9 0
eters but with reszpect to the WMAP1 simulations only. Not tapie 2 contains values af /v for the WMAP3 simulations
§urpr|5|ngly, t.heX /v values reduce_ sllght!y when compar- only. The?/v are somewhat larger than for the WMAP1
ing the bestitf (o) to the WMAP1 simulations only, which runs at all overdensities, even though the WMAP3 residuals
comprise a majority of the simulations and therefore diinee t do not seem to be systematically offset from the glotfal)
fitting results. fits. We test this statistically by refitting for the parametef

The solid blue curve in thé\ = 200 panel represents the : . : . 2
L i . . - equation (3) usingnly the WMAP3 simulations. The=/v
fitting function of Jenkins et al. (2001) calibrated on their values are listed in column 10 of Table 2. For eachthe

set of7CDM simulations (their equation B3), usily =180 2 ¢ihe fit is only reduced marginally. In the mass range

(rescaling this equation to 200 yields nearly indistinpaisle covered b imulati :
5 1 . ; y our simulations, the difference between theajlob
[)eslults). AM thlol.”r]‘ I\s/lr?'t;,hg\%?nkms ri%gg'sflo_tﬁ%. f(o) functions and those derived from the WMAP3 simula-
e ‘.JIW Iourf;esufs. e onhe s 1 Orﬂqgn_(‘loo ) unlc 'ﬁn IS tions differ by < 2%, but with a~ 4% uncertainty in the nor-
Ellml arly Sﬁt rorﬂ our rssu ts. ? ]E . pane ,t'énie malization of the WMAP3-only fitting function, derived from
ue curve shows the Jenkins et. al. fitting function calitula the bootstrag method described above. Thus we conclude that

to A =324 on their set oACDM simulations (essentially : - .
the WMAP1 cosmology). For this comparison the Jenkins the highery” values are not due to a systematic change in

formu',a has be,en resc,aled o __400 using t,he same halo 14 Because the 50 realizations of L1280 outnumber all the retsteo$im-
rescaling techniques discussed in §2.3 and in Hu & Kravtsovulations (which only number 17), we create bootstrap sampldsi sam-
(2003). The Jenkins SO(324) function (their Equation B4) pling from the list of L1280 realizations, then sampling froine rest of the
simulation set. This guarantees a fair sampling of the range bprobed
13 Note that we can interpret higher redshift outputs of a gsiemulation by the simulations. If we do not do this, many bgoﬁtrap sampléonly
as thez = 0 epoch of a simulation with different cosmological parameeter ~Ccontain mass function with results abaviez, 2 x 101 h™ M, which would
corresponding t62m(2) and other parameters at the redshift in question. artificially inflate the size of the low-mass errors.
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FiG. 7.— Residuals of the measured mass functions with respeue toetst fit analytic mass functions from Table 2 for all WMAP1 datians atz= 0. Error
bars are shown for the first and last point for each simulatiad,only points with less than 10% error bars are plotted thi¢ exception of L80, for which 15%
is the maximum. Fo\ = 200, the blue curve represents the Jenkins et al. (20013&@®ass function (scaling up th = 200 yields indistinguishable results).
The red dashed curve represents the Sheth & Tormen (1999) umesimh. ForA = 400, the blue curve represents the Jenkins et al. (20012&@®8aled up to
A =400). ForA = 1600 andA = 800, the solid curve represents the Jenkins SO(324) massduiscaled up analytically assuming NFW profiles.

TABLE 2
MASS FUNCTION PARAMETERS FORf(0) AT z=0

A A a b ¢ x?/v(ALL)  Nmin x%/v (WMAP1) x2/v (WMAP3) x2/v (WMAP3-it)
200 0.186 1.47 257 1.19 1.15 400 1.07 1.66 1.62
300 0200 152 225 1.27 1.17 400 1.08 1.65 1.60
400 0212 156 2.05 1.34 1.05 600 0.96 1.49 1.37
600 0218 1.61 1.87 1.45 1.06 600 0.99 1.55 1.28
800 0.248 1.87 159 1.58 1.10 1000 1.07 1.36 1.14
1200 0.255 213 151 1.80 1.00 1000 0.97 1.22 1.16
1600 0.260 2.30 1.46 1.97 1.07 1600 1.03 1.34 1.25

2400 0.260 2.53 1.44 2.24 1.11 1600 1.07 1.50 1.26
3200 0.260 2.66 1.41 2.44 1.14 1600 1.09 1.61 1.33

NOTE. — Npin is the minimum number of particles per halo used in the fit. Figsfar simulations az = 0.
The WMAP1 and WMAP3? /v values are with respect to the WMAP1 and WMAP3 simulations getsgely, but
using the best-fit parameters. The WMAP3xfft/v values are independent fits using only the WMAP3 simulations

f(o) due to variations in cosmology, but rather scatter in the
simulations themselves at the5% level, excluding obvious

outliers where Poisson noise dominates.

3.3. Redshift Evolution

Figure 10 shows the evolution of tle= 200 mass function
for four different redshifts fronz= 0 to 2.5. Results are plot-
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FIG. 8.— The trajectories of the best-fit parametersf @f) from Table 2. In each panel, the order of the points is from-Ix to high-A (left to right).
Error bars represent &-variance of parameters from the MCMC chain. In panel (a), trenalizationA is plotted against power-law sloge In panel (b), the
power-law amplitudé is plotted against the cutoff scate The lower panel shows the rms scatter of mass functions frdrb@Btstrap samples, creating by
sampling the simulation list. Light gray is fdx = 200, while dark gray is foA = 1600.

ted for the subset of simulations for which we have previous it encapsulates the changesfifr) with A seen in Figures 10

redshift outputs. When modeled as pure amplitude evolution
the mass function evolves as{%)™°25. However, it is also
clear that the shape d¢{o) is evolving with redshift such that
the amplitude at log™ > 0 decreases at a higher rate. This
is more evident in Figure 11, in which(c) at A = 1600 is
shown for the same redshifts. Asincreases, both the evolu-
tion in the amplitude and shape bfc) become stronger.

In Figures 10 and 11, the solid curves show a model in
which the first three parameters bfc) are allowed to vary
as a power law of £z

A@ =Ao (1+2)0M, (5)
a2) =a (1+27°%, (6)
b(2)=bo (142, (7)

~ 075 \?
0ge(8) =~ ((oa 7)) ®

where subscript ‘0’ indicates the value obtaineda0 in Ta-
ble 2. Modulation ofA controls the overall amplitude df{o),
while a controls the tilt, andb sets the mass scale at which the
power law inf (o) becomes significant. Modifying results

in a shift between the amplitudes at low and highdot) thus

,and 11. Although the redshift scaling introduced here negch

the results ar < 2.5 accurately, residuals gf 5% emerge at
z=2.5. Itis possible that the evolution between 1.25 and

2.5 is slowing down. Because the numerical resuliz=a2.5

are quite noisy and cover only a small range'ih, our results

at this value ok and extrapolation to higher redshifts must be
checked with other simulations. Extrapolating equation (5
(8) toz= 10 produces affi(c) that is reduced by 50% with
respect ta= 0. This seems unlikely given current studies but
needs to be checked with a consistent halo finding algorithm.

Reed et al. (2007) parameterize the redshift-dependent
mass function in terms of bothand the effective spectral in-
dex of the linear power spectrumy;. These authors use this
parameterization to model the mass function at10, where
differences in the slope af+ from z= 0 are large. This ap-
proach is ill suited for modeling the evolutionat 3, where
there is very little change in the effective spectral indElxis
implies that the parameter dominating the redshift evotuti
(at these redshifts) i€, rather than the shape of the power
spectrum.

It is interesting to note that the evolution in the exponen-
tial cutoff scale is minimal. Any evolution in this mass sal
would yield quantitatively different residuals than thesen
in Figure 10 and 11. Namely, the residuals would show pro-
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FiG. 9.— Residuals of the measured mass functions with respeue toetst fit analytic mass function from Table 2 for all WMAP3 siatigdns az= 0. Error
bars are shown for the first and last point for each simulatiod, only points with less than 10% error bars are plotted) tieé exception of L80OW, for which
15% is the maximum.

nounced curvature at lag* > 0. Our results show that the particles. The friends-of-friends masses have not been cor
dominant effect is a shift in the normalization in the mass rected for any systematic errors (equation [2] in Warren.et a
function rather than the cutoff mass scale. Thus our results2006), resulting in the slight negative slope to the redslat
are not consistent witli(o) being universal as a function of low masses. The mass function shows some redshift evolu-
virial overdensity becausg,;; evolves with redshift. Nor are  tion, but only of order~ 10% at z=1.25, or roughly half that
our results consistent with the mass function being univer-in Figure 10.
sal at a fixed overdensity with respect to the critical dgnsit  The right column shows the results for halos identified with
(rather than defining\ with respect to the background, as we a linking length ofl = 0.1. The smaller linking length iden-
do here). tifies halos with higher overdensities. The residuals ath wi
The Jenkins et al. (2001) study reports no detected evolu-respect tof (o) for A = 1600. For this linking length, the red-
tion of the FOF or SO mass functions with redshift. More re- shift evolution is stronger than foé= 0.2, and the shape of the
cent results quantify the evolution of the FOF at high refishi FOF mass function changes dramatically. As a whole, these
z> 10, to be 5-10% (Lukic et al. 2007; Reed et al. 2007; results indicate that the mass function is also non-uraters
Cohn & White 2007). However, friends-of-friends identified for FOF halos, with the degree of non-universality depegdin
halos may have a different response to changes in the redshifon the linking length used.
evolution of halo profiles. Merging rates vary with redshift These results are in general agreement with those of other
and this may be reflected in the FOF tendency to bridge dis-recent studies that considered evolution of the mass fomcti
tinct structures. Figure 12 shows the redshift evolution fo for FOF halos, although the overall picture of how the mass
friends-of-friends selected halos in the L500 and L250 Boxe function evolves with redshift is not yet clear. The simula-
The panels in the left column show the results for halos iden-tion results of Lukic et al. (2007) exhibited —5% residuals
tified with a linking length of 0.2. Residuals are calculated with respect to the =0 Warren et. al. mass function as 5,
with respect to the Warren et al. (2006) fitting formula with but with a monotonic trend of rising residuals with increasi
their best fit parameters, plotted down to halos containd@@ 1 redshift. The FOF mass function in the Millennium Simu-
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FIG. 10.— Redshift evolution of thé\ = 200 mass function. Each panel
shows the residuals of ttee= 0 mass function with respect to the measured
mass functions at= 0, 0.5, 1.25, and 2.5. Note that the simulation set used
here is a combination of WMAP1 and WMAP3 boxes. Error bars aressho
for the first and last points for each simulation, and only foimith < 10%
are shown, with the exception of the L80 and L80W, for each 1§%e
limit. The shaded region brackets®¥h Mg, to 10" h™1M,. The solid
curves represent tiie= 0 mass function modified by equations (5)—(8).
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here is a combination of WMAP1 and WMAP3 boxes. Results arequlott
down to halos with 400 particles, as opposed to the limit of0L66ed in
fitting f(o). All points with errors< 15% are plotted. The shaded region
brackets 18 h™M¢, to 104 h"™XM,. The solid curves represent the 0
mass function modified by equations (5)—(8).
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lation, shows roughly 20% evolution from= 0 to 10 (Reed

et al. 2007). Finally, Fakhouri & Ma (2007) recently showed
that the Millennium Simulation FOF mass function, once cor-
rected for spurious FOF linking between halos, evolves by
~ 20% fromz=0 to 1. This is consistent with our findings,
but note that the volume of the Millennium simulation and
statistics at large masses is substantially worse thanrisetu

of simulations.

4. SUMMARY AND DISCUSSION

We have presented a new fitting function for halo abun-
dances and their evolution in tie&CDM cosmology. The fit-
ting function can be used to predict halo mass functions for
spherical aperture masses defined with an arbitrary overden
sity over a wide range of values. For the WMAP1 cosmology
our results are accurate at the percent level in the mase rang
relevant for cluster cosmology. For the WMAP3 cosmology
our results are accurate 65%. One of our main results is
that the mass function is non-universal, and varies in a sys-
tematic way with redshift in the interval= [0, 2.5], with the
abundance of halos at a given log monotonically decreas-
ing with increasing.

We have parameterized redshift evolutionfé#) as a sim-
ple scaling of thez = 0 fitting parameters with (2*. We
note that if this evolution is driven by changes(q, with
z, it may be more robust to modédlc,2) as a function of
the growth rate rather thantlz. Our simulation set does not
probe a large enough cosmological parameter space to detect
differences due to different growth factors. However, thiis
become important when investigating how the mass function
evolves in dark energy cosmologies, in which the primary
change in structure formation is a different growth funetio
of perturbations.

Our finding of evolving, non-universal (o) is quantita-
tively different from the results of previous analyses thse
the friend-of-friends method for halo identification, whic
generally show weaker evolution and greater degree of tnive
sality of the functionf (o). We argue that the likely explana-
tion for this difference is greater sensitivity of the SO ded
mass to the redshift evolution of halo concentrations. As di
cussed previously, SO masses are the integrated halo profile
within a specified radius and lower halo concentrationsltesu
in lower masses at fixed abundance (or, conversely, fewer ha-
los at fixed mass). The fact that the high-mass end of the
mass function (where concentrationszat O are lower and
the mass withirRx0/C200 is a significant fraction of the total
mass) evolves somewhat faster than the low-mass end, argues
that evolution of concentrations plays a significant roléhia
evolution of f (o).

The evolution of halo concentrations is mostly driven by
the change if2, with redshift. This implies that () in cos-
mologies with substantially different matter densitiez at0
will be systematically different from the one we find herer{pe
haps closer to our> 1 results). There are indications that this
is indeed the case. The H384&imulation, withQ2,,, = 0.2, is
abovef(o) by ~ 5% atz=0. The Jenkins et al. (2001) fit-
ting function for A = 180 was calibrated on simulations with
Qm =1, producing a fitv 15% below our results at the same
overdensity. The Jenkins SO(180) mass function is close to
ourA =200 results at=1.25, where), is approaching unity.

The lower evolution of the FOF mass function with redshift
can be understood from Figure 2. The distribution of mass
ratios between FOF and SO halos changes betwedhand
z=1.25. The median mass ratidlso/Mror, decreases while
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FIG. 12.— Evolution of the FOF mass function for linking lengthd & 0.2 (left panels) andl = 0.1 (right panels). The simulations used are L500 and L250.
The L500 simulation has been downsampled to 1/8 the origiméicfanumber. Fot = 0.2, the residuals are plotted with respect to the Warren ¢2a06)
function. Mass functions are plotted down to 100 particleshmlo but have not been corrected for discreteness effeztsequation 2 in Warren et. al.). For
| = 0.1, the residuals are plotted with respect to the 1600 mass function from Table 1. Note the larger range ofthes atz= 2.5 for| = 0.1. The FOF mass
function evolves less than the SO mass function, but thigla@numerical effect due to increased linking of distindbbha

the scatter increases at higleedue to more linking ofdis- of the redshift dependence of the mass function parameters
tinct objects. The number of distinct objects at a fixeddoy extends only tae = 2.5, we caution against extrapolation of
decreases, but the higher incidence of linking offsetsahis  equations (5)—(8) to significantly higher redshifts. As nbte
fect. Thus the weaker evolution of the FOF mass function is above,f (o) is evolving less rapidly from .25 < z < 2.5 than
due to this linking of separate collapsed halos and is lgrgel from 0< z< 1.25. Thus using the= 2.5 f(¢) should yield a
artificial. The better universality of(c) may still seem like  mass function with reasonable accuracy at highéut must
an advantage of the FOF mass function. However, as we disbe verified with additional simulations.
cussed in this paper, the large and redshift-dependent scat The range of cosmologies probed here is narrow given the
ter between SO and FOF masses implies similarly large andvolume of parameter space, but it is wider than the allowed
redshift-dependent scatter between FOF masses and clusteange given recent results from CMB in combination with
observables. This makes robust interpretation of observedther large-scale measures (Komatsu et al. 2008). For gen-
cluster counts in terms of the FOF halo counts problematic. eral use that does not require 5% accuracy, extending our re-
Our fitting function is calibrated over the rang®.6 < sults somewhat outside this range will produce reasonable r
logo™ < 0.4, which atz=0 spans a range of halo masses sults. It is unlikely that variations in the shape and amplit
roughly 13°° <M < 10'*° h™*M, depending on the spe- of the power spectrum will yield significantly different fos
cific choice of cosmology. In Figure 13 we show how this of f(o). As discussed above, however, large variation@4n
mass range evolves with redshift. By 3, the lower mass atz=0 (ie,2n=0.1 orQy, = 1), are not likely to be fit by our
limitis ~ 10° h™*M,. At this redshift, our fitting functionis ~ z=0 mass function within our 5% accuracy. Models with a
in agreement with the numerical results of Colin et al. (3004 higher matter density a= 0 can be approximated by using
which probe the mass range®’OM < 10° h™*M,. Athigher  our calibratedf (o) at the redshift for whiclf2(2) is equal to
redshifts, logr is a slowly varying function of mass, making the chosen value.
the lower mass limit evolve rapidly. Because our calibratio The next step in the theoretical calibration of the mass-func
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tion for precision cosmology should include careful exam-
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ination of subtle dependencies of mass function on cosmo-

logical parameters (especially on the dark energy equafion
state), effects of neutrinos with non-zero mass, effecteoof
gaussianity (Grossi et al. 2007; Dalal et al. 2007), etc.t,Las

but not least, we need to understand the effects of baryonic

physics on the mass distribution of halos and related effatt
the mass function, which can be quite significant (Rudd et al.
2008). The results of Zentner et al. (2007) indicate that the

main baryonic effects can be encapsulated in a simple change

of halo concentrations, which would result in a uniform shif
of Ma and a uniform correction tb(c). Whether this is cor-
rect at the accuracy level required remains to be demoadtrat
with numerical simulations.

Our study illustrates just how daunting is the task of cal-
ibrating the mass function to the accuracy$b%. Large
numbers of large-volume simulations are required to esti-
mate the abundance of cluster-sized objects, but high dignam
range is required to properly resolve their internal mass di
tribution and subhalos. The numerical and resolution &ffec
should be carefully controlled, which requires stringeor-c
vergence tests.
exponential cutoff of the mass function can be influenced
by the choice of method to generate initial conditions and
the starting redshift, as was recently demonstrated byderoc
et al. (2006, see also Appendix A). All this makes exhaustive
studies of different effects and cosmological parametsts u
ing brute force calibration of the kind presented in thisqrap
for the ACDM cosmology extremely demanding. Clever new

In addition, the abundance of halos on the

ways need to be developed both in the choice of the param-
eter space to be investigated (Habib et al. 2007) and in com-

plementary studies of various effects using smaller, tagye
simulations.
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APPENDIX

A. TESTS OF THE INITIAL CONDITIONS

In arecent study, Crocce et al. (2006) investigated diffees between using the standard first-order Zel'dovich &xipration
(ZA) and second-order Lagrangian perturbation theory [@LfBr generating initial conditions of cosmological siratibns. ZA
assumes that particle trajectories are straight linedobl#irge density fluctuations trajectories should curve thutidal effects.
Thus, if a simulation is initialized at the epoch where therdensity is large in some regions, the resulting error iiga
trajectories will lead to ‘transients’ in the evolution aéppurbations (see also Scoccimarro 1998), which can péosis 0. This
effect is strongest for the regions containing rarest peéleagest height that tend to evolve into the largest gatdugters at low

redshift. In their simulation results, Crocce et. al. fingt 40% discrepancy a#l ~ 10 h™* M,

in z= 0 mass functions between

2LPT and ZA with starting redshift af = 24. This discrepancy is expected to grow more significahtgiter redshift at fixed
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FIG. 14.— Comparison between the large-box simulations usedeirtetkt and those in Warren et al. (2006) and Evrard et al. (200Be box sizes and
point-types for the three HOT boxes and the Hubble Volumelaoe/a in the top panel above the horizontal line. In additeoaersion of the LLOOOW ART box,
started at lower redshift, is also included in the compariddme large-box simulations used from Table 1 are also inclim¢ow the horizontal line. The bottom
panel compares thA = 200 mass functions to the best-fifc) atz=0. The middle panel shows the resultzat1.25. In thez= 0 panel, the shaded region
indicates 1&h™ Mg < M < 10" h™* M, in the WMAP1 cosmology. In the= 1.25 panel, the shaded region indicate$h0' Mg < M < 105 M.

halo mass. The effect is particularly worrisome for presisialibration of abundance of the most massive objectsyateatshift
(those objects that are currently collapsing or have ordgméy collapsed). In this appendix we present tests of ffleets of the
initial redshift on the mass function and explain why we hdigearded some of the large-volume simulations from oulyaisga

The top panel in Figure 14 shows a graphical key of the thnegibox HOT simulations used in the Warren et. al. fit that
we do not utilize in our mass function fits. These simulatibage starting redshifts of = 34, 28, and 24 (witlz, decreasing
with increasing box size). In addition, we also have redutts: the Hubble Volume (HV) simulation, a 3000* Mpc simulation
(Evrard et al. 2002). We use the same SO halo catalog presenke/rard et al. (2002), which used a density criterion dd 20
times the critical density rather than the mean. Thus we keaked the halo masses frain= 666 toA = 200, assuming NFW
profiles as detailed in §2. Lastly, we have included a re-kitian of the L1000W ART box which has been initializedzat 35
rather tharg = 60 using the same set of random phases and ZA at both steetisbifts.

The bottom panels of Figure 14 show the residuals of the sitiom mass function from the best fit to our core simulatian se
atz=0andz=125. At 10 h"tM, all simulations are in excellent agreement. However, & &0 M, the HOT boxes are
~ 10-20% below thef (o) obtained from the 2LPT simulations and ART L1000W run. Theseifunction of the HV simulation,
with z = 35, is also~ 15% below the 2LPT simulations.

At z= 0, there is a~ 2% difference between log-ART box and the higher: version used in the fitting. This is smaller than
the difference between mass functions for the Crocce e08b 2imulations wittz, = 24 andz = 49, which may be due to sample
variance. However, the difference between the two ART baxa®ases at higher redshift. The ART box wathkr 60 is in good
agreement with the 2LPT simulationszat 1.25, implying that convergence has been reached at a Ipuiean shown in Crocce
et al. The run withg; = 35, however, is 26 40% lower than the best fit at large masses.

It is not yet entirely clear whether the source of the disargges in the mass functions at the highest masses can ibatatir
solely to the errors of the ZA-generated initial conditiofitie difference between the large-volume HOT boxes and thRd 2
results are larger than expected from just the ZA errorso Aleth ART boxes, witlg = 35 andz = 60, are in agreement with
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TABLE B3
SECOND DERIVATIVES OF f(0) PARAMETERS

A A a b c
200 0.00 0.00 0.00 0.00
300 0.50 1.19 -1.08 0.94
400 -1.56 -6.34 12.61 -0.43
600 3.05 21.36 -20.96 4.61
800 -2.95 -10.95 24.08 0.01
1200 1.07 2.59 -6.64 1.21
1600 -0.71 -0.85 3.84 1.43
2400 0.21 -2.07 -2.09 0.33
3200 0.00 0.00 0.00 0.00

the 2LPT simulations at= 0. Other factors, such as resolution effects on the halsityeprofiles, may play a dominant role in
the discrepancy exhibited by both the HOT boxes and the HVilsition. Regardless of the source of the discrepancy, leerc
that the large-volume HOT boxes and HV simulations are gyatieally different from other higher-resolution simudats. We
therefore do not include them in our analyses.

In summary, the simulations which we use to derive our cairgs on the high-mass end of the halo mass function arefalsto
against changing initial redshift. The 2LPT simulationséhbeen thoroughly tested in Crocce et al. (2006). The L10@0W
L500 simulations, utilizing ZA withg, 2> 50, show consistent results with the 2LPT simulations atipialredshifts. However,
quantifying the effects of initial conditions, finite sination volume, and possible numerical artifacts at th&% level will
require significant additional work.

B. INTERPOLATION OF MASS FUNCTION PARAMETERS

To facilitate the use of our results in analytic calculatipwe provide fitting functions for the parametersf ) as a function
of logA. The dependence of each parameter in the mass functiorssiealy well described by

_ [ 0.1(logA)-0.05 if A < 1600
A= { 0.26 if A>1600Q (B1)
a=1.43+(logA-2.3)*°, (B2)
b=10+(logA-1.6)", (B3)
and
c=1.2+(logA-2.35)° (B4)

All logarithms are base 10. Because the parametef§afare not completely smooth with Iay, these functions yield mass
functions that are accurate to orgy5% for most values of\, but can degrade t§ 10% at logr* > —0.7 for some overdensities.
Figure B15 demonstrates the accuracy of the fitting funstiwith respect to the results from Table 2. For higher acgurae
recommend spline interpolation of the parameters as aiimof logA. Figure B15 shows the results of the spline interpolation
when obtaining the parameters ffo). We provide the second derivatives of thgr) parameters for calculation of the spline
coefficients (cf., §3.3 in Press et al. 1992) in Table B3.

C. AN ALTERNATE, NORMALIZED FITTING FUNCTION

The fitting function given in equation (3) is an excellentatgstor of the data over the range of our data, but abidg< -1.0,
f(o) asymptotes to a constant value. For some applicationgifijadly halo model calculations of dark matter clustering
statistics, it is necessary to integrate over alldogto account for all of the dark matter in halos. The integraéqfiation (3)
over all logz™! implies an infinite mass density. In this appendix we preaarglternative fitting function that is normalized such
that

/g(a)d Ine™t=1 (C1)

for all values of A atz=0. We focus on equation (3) for our main results because ananpeters of that function vary more
smoothly and monotonically with\, and incorporating redshift evolution into that functi@amore straightforward and more
accurate. Because we can only calibrate our mass functiogto® > —0.6, the behavior of the fitting function at lower masses
is arbitrary. Thus it is not to be expected that the fittingction in this appendix is more or less accurate than equéSipbelow
this calibration limit, merely that the function is bettehaved.

With these caveats in mind, we find thatzat 0 a function of the form
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FIG. B15.— Accuracy of the fitting functions presented in Appierisl for calculating the parameters 6{c) as a function ofA (solid lineg. All curves are
residuals with respect to the best-fit results ¢f) from Table 2. For all overdensities excedt= 600, the accuracy df(c) is < 5%. The dashed lines show the

accuracy off (o) when using spline interpolation, which is accurate3@% for all A and logr ™.

9(0) =B {(Z)_d +a—f] g9/’ (C2)

yields nearly identical results to those presented in Eigur Equation (C2) has four free parameters, Vithet by the nor-
malization constraint from equation (C1). Expressed imteof the parameters of equation (C2), the normalizatioarpater

is
B=2 [ed g¥2r <d) +g /21 <f)}_1 (C3)
2 2

We follow the same procedure for fitting the model to the datme§2.4. Best-fit parameters are listed in Table C4. The
values are similar to the values listed in Table 2.

Another requirement of the halo model is that dark matterfigased with respect to itself. This requires a recalibratf
the large-scale halo bias function, which we investigateniother paper (Tinker et al., in preparation).
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TABLE C4
NORMALIZED MASS FUNCTION PARAMETERS FOR
g(o) AT z=0
A B d e f g X2/v
200 0482 197 100 051 1228 1.14
300 0466 2.06 099 048 1310 1.16
400 0494 230 093 048 1403 1.04
600 0.494 256 093 045 1553 1.07
800 0.496 283 096 044 1702 1.09
1200 0.450 292 1.04 0.40 1907 1.00
1600 0.466 3.29 1.07 0.40 2138 1.07
2400 0.429 337 112 0.36 2394 1.12
3200 0.388 3.30 1.16 0.33 2572 1.14




