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ABSTRACT
We measure the mass function of dark matter halos in a large set of collisionless cosmological simulations

of flat ΛCDM cosmology and investigate its evolution atz. 2. Halos are identified as isolated density peaks,
and their masses are measured within a series of radii enclosing specific overdensities. We argue that these
spherical overdensity masses are more directly linked to cluster observables than masses measured using the
friends-of-friends algorithm (FOF), and are therefore preferable for accurate forecasts of halo abundances. Our
simulation set allows us to calibrate the mass function atz = 0 for virial masses in the range 1011 h−1 M⊙

≤ M ≤ 1015 h−1 M⊙ to . 5%, improving on previous results by a factor of 2-3. We derive fitting functions for
the halo mass function in this mass range for a wide range of overdensities, both atz = 0 and earlier epochs.
Earlier studies have sought to calibrate a universal mass function, in the sense that the same functional form
and parameters can be used for different cosmologies and redshifts when expressed in appropriate variables.
In addition to our fitting formulae, our main finding is that the mass function cannot be represented by a
universal function at this level or accuracy. The amplitudeof the “universal” function decreases monotonically
by≈ 20−50%, depending on the mass definition, fromz= 0 to 2.5. We also find evidence for redshift evolution
in the overall shape of the mass function.
Subject headings:cosmology:theory — methods:numerical — large scale structure of the universe

1. INTRODUCTION

Galaxy clusters are observable out to high redshift (z. 1–
2), making them a powerful probe of cosmology. The large
numbers and high concentration of early type galaxies make
clusters bright in optical surveys, and the high intracluster gas
temperatures and densities make them detectable in X-ray and
through the Sunyaev-Zel’dovich (SZ) effect. The evolutionof
their abundance and clustering as a function of mass is sensi-
tive to the power spectrum normalization, matter content, and
the equation of state of the dark energy and, potentially, its
evolution (e.g., Holder et al. 2001; Haiman et al. 2001; Weller
et al. 2002; Majumdar & Mohr 2003). In addition, clusters
probe the growth of structure in the Universe, which provides
constraints different from and complementary to the geomet-
ric constraints by the supernovae type Ia (e.g., Albrecht etal.
2006). In particular, the constraints from structure growth
may be crucial in distinguishing between the possibilitiesof
the cosmic acceleration driven by dark energy or modification
of the magnitude-redshift relation due to the non-GR gravity
on the largest scales (e.g., Knox et al. 2005).

The potential and importance of these constraints have mo-
tivated current efforts to construct several large surveysof
high-redshift clusters both using the ground-based optical
and Sunyaev-Zel’dovich (SZ) surveys and X-ray missions in
space. In order to realize the full statistical power of these sur-
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veys, we must be able to make accurate predictions for abun-
dance evolution as a function of cosmological parameters.

Traditionally, analytic models for halo abundance as a func-
tion of mass, have been used for estimating expected evolu-
tion (Press & Schechter 1974; Bond et al. 1991; Lee & Shan-
darin 1998; Sheth & Tormen 1999). Such models, while con-
venient to use, require calibration against cosmological simu-
lations. In addition, they do not capture the entire complexity
of halo formation and their ultimate accuracy is likely insuffi-
cient for precision cosmological constraints. A precisionmass
function can most directly be achieved through explicit cos-
mological simulation.

The standard for precision determination of the mass func-
tion from simulations was set by Jenkins et al. (2001) and
Evrard et al. (2002), who have presented fitting function for
the halo abundance accurate to∼ 10−20%. These studies also
showed that this function was universal, in the sense that the
same function and parameters could be used to predict halo
abundance for different redshifts and cosmologies. Warren
et al. (2006) have further improved the calibration to≈ 5%
accuracy for a fixed cosmology atz = 0. Several other stud-
ies have tested the universality of the mass function at high
redshifts (Reed et al. 2003, 2007; Lukic et al. 2007; Cohn &
White 2007).

One caveat to all these studies is that the theoretical counts
as a function of mass have to be converted to the counts as
a function of the cluster properties observable in a given sur-
vey. Our understanding of physics that shapes these properties
is, however, not sufficiently complete to make reliable, robust
predictions. The widely adopted strategy is therefore to cali-
brate abundance as a function of total halo mass and calibrate
the relation between mass and observable cluster properties
either separately or within a survey itself using nuisance pa-
rameters (e.g. Majumdar & Mohr 2004; Lima & Hu 2004,
2005, 2007). The success of such a strategy, however, de-
pends on how well cluster observables correlate with total
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cluster mass and whether evolution of this correlation with
time is sufficiently simple (e.g., Lima & Hu 2005).

Tight intrinsic correlations between X-ray, SZ, and optical
observables and cluster mass are expected theoretically (e.g.,
Bialek et al. 2001; da Silva et al. 2004; Motl et al. 2005; Nagai
2006; Kravtsov et al. 2006) and were shown to exist obser-
vationally (e.g., Mohr et al. 1999; Lin et al. 2004; Vikhlinin
et al. 2006; Maughan 2007; Arnaud et al. 2007; Sheldon et al.
2007; Zhang et al. 2008) in the case when both observables
and masses are defined within a certainsphericalradius en-
closing a given overdensity. The majority of the mass function
calibration studies, however, have calibrated the mass func-
tion with halos and masses measured using the friends-of-
friends (FOF) percolation algorithm. This algorithm is effi-
cient, straightforward to implement, and is therefore appeal-
ing computationally. The FOF algorithm does not assume any
geometry for the halo. This is advantageous given that halos
have varied shapes. However, the relation between the FOF
masses and observables is quite uncertain.

As we show below (see § 2.3 and Fig. 2), there is large,
redshift-dependent, and asymmetric scatter between the FOF
mass and mass measured within a spherical overdensity,
which implies that there is also large asymmetric scatter be-
tween the FOF mass and cluster observables. This does not
bode well for self-calibration of such relations. Furthermore,
there is no way to measure the equivalent of the FOF mass
in observations, which means that any calibration of the FOF
mass and observables will have to rely on simulations. An
additional issue is that halos identified with an FOF algorithm
may not have one-to-one correspondence to the objects iden-
tified in observational surveys. For example, the FOF finder
is known to join neighboring halos into a single object even if
their centers are located outside each others virial radii.Such
objects, however, would be identified as separate systems in
X-ray and SZ surveys.

Although no halo-finding algorithm applied on simulations
containing only dark matter may be perfect in identifying all
systems that would be identified in a given observational sur-
vey, the spherical overdensity (SO) halo finder, which iden-
tifies objects as spherical regions enclosing a certain over-
density around density peaks (Lacey & Cole 1994), has sig-
nificant benefits over the FOF both theoretically and obser-
vationally. Most analytic halo models (see, e.g., Cooray &
Sheth 2002, for review) assume that halos are spherical, and
the statistics derived are sensitive to the exact halo definition.
To be fully self-consistent, the formulae for halo properties,
halo abundance, and halo bias, on which the calculations rely,
should follow the same definition. The tight correlations be-
tween observables and masses defined within spherical aper-
tures means that connecting observed counts to theoretical
halo abundances is relatively straightforward and robust.At
the same time, the problem of matching halos to observed
systems is considerably less acute for halos identified around
density peaks, compared to halos identified with the FOF al-
gorithm.

Thus there is substantial need for a recalibration of the
halo mass function based on the SO algorithm for a range
of overdensities probed by observations and frequently used
in theoretical calculations (∼ 200− 2000). Such calibra-
tion for the standardΛCDM cosmology is the main focus
of this paper. Specifically, we focus on accurate calibra-
tion of halo abundances for intermediate and high-mass halos
(∼ 1011 − 1015h−1 M⊙) over the range of redshifts (z∼ 0− 2)
most relevant for the current and upcoming large cluster sur-

veys.
The paper is organized as follows. In § 2 we describe our

simulation set and SO algorithm. In § 3 we present results for
the mass function, demonstrating how our results depend on
cosmology and redshift. In § 4 we summarize and discuss our
results.

Throughout this paperwe use masses defined within radii
enclosing a given overdensity with respect to the mean density
of the Universe at the epoch of analysis.

2. METHODS

2.1. Simulation Set

Table 1 lists our set of simulations. All the simulations are
based on variants of the flat,ΛCDM cosmology. The cosmo-
logical parameters for the majority of the simulations reflect
the zeitgeist of the first-year WMAP results (Spergel et al.
2003). We will refer to this cosmology as WMAP1. A smaller
number of simulations have cosmological parameters closer
to the three-year WMAP constraints (Spergel et al. 2007), in
which bothΩm andσ8 are lower and the initial power spec-
trum contains significant tilt ofn = 0.95. This subset of simu-
lations are not of the same identical parameter set, but rather
represent slight variations around a parameter set we will refer
to globally as WMAP3.

The largest simulation by volume followed a cubic box of
1280h−1 Mpc size. There are fifty realizations of this simu-
lation performed with the GADGET2 code (Springel 2005),
which have been kindly provided to us by R. Scoccimarro.
With the exception of these 1280h−1 Mpc boxes, the initial
conditions for all simulations were created using the stan-
dard first-order Zel’dovich approximation (ZA). Crocce et al.
(2006) point out possible systematic errors in the resulting
mass function if first-order initial conditions are startedinsuf-
ficiently early. Using second order Lagrange perturbation the-
ory (2LPT) to create initial conditions, they identify discrep-
ancies between the halo mass function from their simulations
and that of Warren et al. (2006) at the highest masses. In War-
ren et al. (2006), several boxes larger than 768h−1 Mpc were
utilized in the analysis that are not listed in Table 1. In tests
with our spherical overdensity halo finder, we find a discrep-
ancy between the 2LPT simulations and these simulations. At
this point, it is not yet clear whether the discrepancy is dueto
the effect advocated by Crocce et al. (2006) or due to other
numerical effects. We explore the issue of initial startingred-
shift in some detail in the Appendix A. What is clear, however,
is that results of these simulations systematically deviate from
other higher resolution simulations, especially for larger val-
ues of overdensities. We therefore do not include them in our
analyses.

The first five simulations listed in Table 1 were used in War-
ren et al. (2006) in their analyses. The integrations were per-
formed with the Hashed Oct-Tree (HOT) code of Warren &
Salmon (1993). Additionally, there are two HOT simulations
in the WMAP3 parameter set. These simulations will be re-
ferred to in the text by their box size, inh−1 Mpc, prefixed
by the letter ‘H’. Simulations in the WMAP3 set will be ap-
pended with the letter ’W’. Due to identical box sizes between
parameter sets, H384 will refer to the WMAP1 simulation,
H384W will refer to the simulation with WMAP3 parame-
ters, and H384Ω will refer to the low-Ωm simulation (which
we will include in the WMAP3 simulation subset).

There are six simulations using the Adaptive Refinement
Technique (ART) of Kravtsov et al. (1997), and four that use
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FIG. 1.— A graphical key for the list of simulations in Table 1. Theupper panel shows point styles for all the WMAP1 simulations ordered by the box size. Each
simulation is represented with a different color, while different point types represent different numerical codes: circles=HOT, squares=ART, triangles=GADGET2.
The lower panel plots all WMAP3 simulations, as well as H384Ω, the low-Ωm simulation. See Table 1 for the details of each simulation.

TABLE 1
PROPERTIES OF THESIMULATION SET

Lbox h−1 Mpc Name ǫ h−1 kpc Np mp h−1 M⊙ (Ωm,Ωb,σ8,h,n) Code zi zout ∆max

768 H768 25 10243 3.51×1010 (0.3,0.04,0.9,0.7,1) HOT 40 0 800
384 H384 14 10243 4.39×109 (0.3,0.04,0.9,0.7,1) HOT 48 0 3200
271 H271 10 10243 1.54×109 (0.3,0.04,0.9,0.7,1) HOT 51 0 3200
192 H192 4.9 10243 5.89×108 (0.3,0.04,0.9,0.7,1) HOT 54 0 3200
96 H96 1.4 10243 6.86×107 (0.3,0.04,0.9,0.7,1) HOT 65 0 3200

1280 L1280 120 6403 5.99×1011 (0.27,0.04,0.9,0.7,1) GADGET2 49 0, 0.5, 1.0 600
500 L500 15 10243×2 8.24×109 (0.3,0.045,0.9,0.7,1) GADGET2 40 0, 0.5, 1.25, 2.5 3200
250 L250 7.6 5123 9.69×109 (0.3,0.04,0.9,0.7,1) ART 49 0, 0.5, 1.25, 2.5 3200
120 L120 1.8 5123 1.07×109 (0.3,0.04,0.9,0.7,1) ART 49 0, 0.5, 1.25, 2.5 3200
80 L80 1.2 5123 3.18×108 (0.3,0.04,0.9,0.7,1) ART 49 0, 0.5, 1.25, 2.5 3200

1000 L1000W 30 10243 6.98×1010 (0.27,0.044,0.79,0.7,0.95) ART 60 0, 0.5, 1.25, 2.5 3200
500 L500Wa 15 5123×2 6.20×1010 (0.24,0.042,0.75,0.73,0.95) GADGET2 40 0 3200
500 L500Wb 15 5123×2 6.20×1010 (0.24,0.042,0.75,0.73,0.95) GADGET2 40 0 3200
500 L500Wc 15 5123×2 6.20×1010 (0.24,0.042,0.8,0.73,0.95) GADGET2 40 0 3200
384 H384W 14 10243 3.80×109 (0.26,0.044,0.75,0.71,0.94) HOT 35 0 3200
384 H384Ωm 14 10243 2.92×109 (0.2,0.04,0.9,0.7,1) HOT 42 0 3200
120 L120W 0.9 10243 1.21×108 (0.27,0.044,0.79,0.7,0.95) ART 100 1.25, 2.5 3200
80 L80W 1.2 5123 2.44×108 (0.23,0.04,0.75,0.73,0.95) ART 49 0, 0.5, 1.25, 2.5 3200

NOTE. — The top set of 5 simulations are from the Warren et al. (2006)study. The second list of 5 simulations are of the same WMAP1 cosmology,
but with different numerical codes. The third list of 8 simulations are of alternate cosmologies, focusing on the WMAP3 parameter set. The HOT
code employs Plummer softening, while GADGET employs spline softening. The values ofǫ listed for the GADGET simulations are the equivalent
Plummer softening; when calculating the spline softening kernel, GADGET uses a value of 1.4ǫ. The force resolution of the ART code is based on the
size of the grid cell at the highest level of refinement.∆max is the highest overdensity for which the mass function can measured directly. Above this
∆, halo mass are inferred from the rescaling procedure in §2.3.A graphical key of this table is shown in Figure 1.

GADGET2 in addition to the L1280 realizations. The L80
and L120 ART boxes modeling the WMAP1 cosmology are
described in Kravtsov et al. (2004) and L250 simulation is de-
scribed by Tasitsiomi et al. (2008, in preparation), while the
three WMAP3 boxes are presented here. The L500 simula-
tions are described in Gottlöber & Yepes (2007) and Yepes
et al. (2007)9. These simulations contain equal numbers of

9 see also http://astro.ft.uam.es/marenostrum/universe/index.html

dark matter and SPH gas particles (without cooling). The
ART and GADGET2 simulations will be referred by their box
size with prefix ‘L’. WMAP3 simulations have a ‘W’ as a suf-
fix.

Our simulation set comprises three different N-body codes,
one based on the popular tree algorithm (HOT), one based
on grid codes with small-scale refinement of high-density re-
gions (ART), and one that combines grid and tree algorithms
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(GADGET2). We present a key in Figure 1 that graphically
displays the range of box sizes. Each simulation is repre-
sented by a different color, while different point types refer to
different simulation codes: circles for HOT, squares for ART,
and triangles for GADGET2. These point symbols and colors
will be used consistently in the figures below.

2.2. Halo Identification

The standard spherical overdensity algorithm is described
in detail in Lacey & Cole (1994). However, in our approach
we have made several important modifications. In Lacey &
Cole (1994) the centers of halos are located on the center of
mass of the particles within the sphere. Due to substructure,
this center may be displaced from the main peak in the density
field. Observational techniques such as X-ray cluster identi-
fication locate the center of the halo at the peak of the X-ray
flux (and therefore the peak of density of the hot intraclus-
ter gas). Optical cluster searches will often locate the cluster
center at the location of the brightest member, which is also
expected to be located near the peak of X-ray emission (Lin
et al. 2004; Koester et al. 2007; Rykoff et al. 2008). Thus we
locate the centers of halos at their density peaks.

Our halo finder begins by estimating the local density
around each particle within a fixed top-hat aperture with ra-
dius approximately three times the force softening of each
simulation. Beginning with the highest-density particle,a
sphere is grown around the particle until the mean interior
density is equal to the input value of∆, where∆ is the
overdensity within a sphere of radiusR∆ with respect to
the mean density of the Universe at the epoch of analysis,
ρ̄m(z) ≡ Ωm(z)ρcrit(z) = ρ̄m(0)(1+ z)3:

∆ =
M∆

(4/3)πR3
∆

ρ̄m
. (1)

All values of∆ listed in this paper are with respect toρ̄m(z).
Since local densities smoothed with a top-hat kernel are

somewhat noisy, we refine the location of the peak of the
halo density with an iterative procedure. Starting with a ra-
dius of r = R∆/3, the center of mass of the halo is calculated
iteratively until convergence. The value ofr is reduced iter-
atively by 1% and the new center of mass found, until a fi-
nal smoothing radius ofR∆/15, or until only 20 particles are
found within the smoothing radius. At this small aperture, the
center of mass corresponds well to the highest density peak of
the halo. This process is computationally efficient and elim-
inates noise and accounts for the possibility that the chosen
initial halo location resides at the center of a large substruc-
ture; in the latter case, the halo center will wander toward the
larger mass and eventually settle on its center. Once the new
halo center is determined, the sphere is regrown and the mass
is determined.

All particles within R∆ are marked as members of a halo
and skipped when encountered in the loop over all parti-
cle densities. Particles located just outside of a halo can be
chosen as candidate centers for other halos, but the iterative
halo-centering procedure will wander into the parent halo.
Whenever two halos have centers that are within the larger
halo’sR∆, the halo with the largest maximum circular veloc-
ity, defined as the maximum of the circular velocity profile,
Vc(r) = [GM(< r)/r]1/2, is taken to be the parent halo and the
other halo is discarded.

We allow halos to overlap. As long as the halo center does
not reside withinR∆ of another halo, the algorithm identifies

these objects as distinct structures. This is in accord withX-
ray or SZ observations which would identify and count such
objects as separate systems. The overlapping volume may
contain particles. Rather than attempt to determine which
halo each particle belongs to, or to divide each particle be-
tween the halos, the mass is double-counted. No solution
to this problem is ideal, but we find that the total amount of
double-counted mass is only∼ 0.75% of all the mass located
within halos, with no dependence on halo mass. This paral-
lels the treatment of close pairs of clusters detected observa-
tionally. When two X-ray clusters are found to have overlap-
ping isophotal contours, each system is treated individually
and double counting of mass will occur as well.

For each value of∆, the halo finder is run independently.
Halo mass functions are binned in bins of width 0.1 in logM
with no smoothing. Errors on each mass function are obtained
by the jackknife method; each simulation is divided into oc-
tants and the error on each mass bin is obtained through the
variance of the halo number counts as each octant is removed
from the full simulation volume (cf. Zehavi et al. 2005, equa-
tion [6]). The jackknife errors provide a robust estimate of
both the cosmic variance, which dominates at low masses, and
the Poisson noise that dominates at high masses (see Hu &
Kravtsov 2003 for a the relative contributions of each source
of error as a function of halo mass).

When fitting the data, we only use data points with error
bars less than 25% to reduce noise in the fitting process. We
note that mass bins will be correlated (low-mass bins more
so than high mass ones). We do not calculate the full covari-
ance matrix of each mass function, so theχ2 values obtained
from the fitting procedure should be taken as a general guide
of goodness of fit, but not as an accurate statistical measure.
However, we note that the data from multiple simulations in
each mass range will be uncorrelated, and the lack of a covari-
ance matrix should not bias our best-fit values for the mass
function.

2.3. Comparison of FOF and SO halos

Cole & Lacey (1996), and later White (2001, 2002),
demonstrated that there is scatter between the masses of ha-
los identified with the FOF and SO halo definitions, as well
as an offset between the mean halo masses using the canoni-
cal values of the linking lengthl = 0.2 in the FOF algorithm
and overdensity∆ = 200 in the SO approach. Figure 2 com-
pares the masses of halos identified with these two definitions
for three different simulations. Halos in a simulation are first
identified with our SO approach, then the FOF finder is sub-
sequently run, beginning at the center of the SO halo. Figure
2a compares∆ = 200 to l = 0.2. The symbols represent the
median mass ratiorM = M200/MFOF.2 as a function ofM200.
The curves represent the upper and lower 90% bounds on the
distribution of mass ratios. Although the median is near unity,
the scatter is large and highly asymmetric.

The asymmetry in the distribution is due to the FOF algo-
rithm linking two or more distinct objects in close proximity
to each other. Because we allow halos to overlap, FOF will
treat these halos as a single object. Due to the arbitrary shape
of FOF halos, the algorithm also links SO objects that do not
overlap. The median mass ratio is also sensitive to the num-
ber of particles per halo; FOF halos are known to be biased
toward higher masses at low particle number (Warren et al.
2006). This occurs because the linking length becomes com-
parable to the density scale length at the outskirts of low-Nha-
los. The scatter between mass definitions is not alleviated by
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FIG. 2.— Comparison between spherical overdensity masses and friends-of-friends masses for the same sample of objects from H384, L250, and L1000W.
Panel (a) compares the masses of∆ = 200 halos to FOF halos withl = 0.2. The symbols represent the median mass ratio, for objects binned byM200. The curves
show the upper 90% and lower 10% bounds of the distribution ofmass ratios in eachM200 bin: solid for H384, dashed for L250, and dotted for L1000W. The
asymmetry in the mass ratio distribution reflects the tendency of FOF to link objects together. Panel (b) compares∆ = 1600 halos to FOF objects withl = 0.1.
Panel (c) shows the distribution of mass ratios,rM = M200/MFOF.2, for halos 13≤ log M200≤ 14 (solid line). The long tail of the distribution atrM < 0.5 indicates
SO halos that are linked with other virialized objects in theFOF halo-finding process. The dotted line is the same distribution atz = 1.25. Panel (d) shows the
distribution ofrM for the same mass range, for the∆ = 1600 and and FOF linking lengthl = 0.1. Solid and dotted lines arez= 0 andz= 1.25, respectively. Both
panels (c) and (d) show results for the L250 run.

making the linking length smaller. This is shown in Figure 2b,
in which the same results are shown for∆ = 1600 andl = 0.1.
The median is once again near unity, and the scatter remains
identical. We note also that there is an offset in the median be-
tween simulations as well; the results from L1000W are∼ 5%
lower than the other simulations atl = 0.2 and∼ 10% lower
at l = 0.1. This offset is not due to the change in cosmology
between the L1000W and the other simulations, therefore it
must be a result of the lower mass resolution.

We find that the curvature in the median mass ratio is alle-
viated when adjusting the massesMFOF.2 by the Warren et. al.
correction formula, (1−N−0.6

p ), whereNp is the number of par-
ticles in a halo. However, the curvature is not entirely amelio-
rated by this formula atl = 0.1, demonstrating that the mass

errors in FOF halos depend on the linking length. We find
that (1−N−0.5

p ) is sufficient to remove the FOF bias forl = 0.1.
Figures 2c and 2d show the distribution of mass ratios for ha-
los between 1013 and 1014 h−1 M⊙ for one of the simulations.
The solid histograms present results atz = 0 and the dotted
histograms is forz= 1.25. Both thez= 0 histograms exhibit a
large, constant tail to low ratios. At higher redshift, the asym-
metry of P(rM) becomes even stronger. The correlation be-
tween spherically-defined masses and the FOF masses is thus
broad and evolves with redshift.

Within thez= 0.5 output of the L1000W simulation, we find
21% moreM > 1014 h−1 M⊙ l = 0.2 FOF halos than∆ = 200
objects at the same mass cut. Predicting the abundance of
higher-overdensity objects usingl = 0.2 FOF objects leads to
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FIG. 3.— The halo density profiles are compared to analytic predictions
for three different simulations. In each panel, the dotted curve represents the
mean interior density given by an NFW profile withc(M) from Dolag et al.
(2004). The shaded region is the expected scatter assumingσlogc = 0.12. The
solid curves with errorbars represent the numerical results. The left panel
shows results from H384 for all halosM > 1014.5 h−1 M⊙. The center and
right panels show results for halosM > 1015 h−1 M⊙. The center and left
panel demonstrate that halo profiles are well resolved in these simulations.
The right panel, shows significant deviations from the expected NFW profile
at r < 0.1R200 in the lower-resolution L1280 simulation.

FIG. 4.— Test of the resolution of the large-volume simulations, L500,
L1000W, and one realization of L1280. In each panel, the mass functions
are plotted as residuals with respect to the best-fitf (σ) function from Ta-
ble 2. The symbols represent the mass functions measured directly from
the simulations at each∆. The curves are mass functions inferred from the
∆ = 200 halo catalog of each simulation, where the mass of each∆ = 200
halo is scaled to higher overdensities assuming an analytic NFW halo (in-
cluding scatter in concentrations at fixed mass). For the two higher resolution
simulations, the scaled and true mass function are in agreement. Due to in-
sufficient resolution, the L1280 mass function falls below the scaled mass
function at high∆.

larger errors. A simple rescaling of the masses of the FOF
halos to∆ = 1600 by assuming NFW density profiles (see the
discussion in the following subsection) leads to an overpredic-
tion of the number of objects ofM > 1014 h−1 M⊙ by∼ 80%.
These discrepancies become larger for higher redshifts, higher
halo mass thresholds, and higher overdensities.

This has significant implications for comparisons with ob-
servational cluster counts. Given that cluster observables
correlate strongly with the spherical overdensity masses,the
large scatter betweenM∆ and MFOF indicates that the FOF
correlation will be weaker. If one is to use a halo mass func-
tion calibrated against halos and masses identified with the
FOF algorithm, a significant additional effort would be re-
quired to calibrate the scatter between FOF masses and ob-
servables as a function of redshift, mass, and cosmology. In
addition, this calibration will have to rely solely on theoretical
modeling, because the mass equivalent to the FOF cannot be
directly measured in observations. The use of the halo abun-
dance predictions made with the spherical overdensity algo-
rithm is therefore strongly preferred.

2.4. Accounting for effects of resolution

Defining the halo masses within a radius enclosing a given
overdensity stipulates that the halo mass is the integratedden-
sity profile within a fixed radius. This means that the mass
depends on the internal density distribution of the halo, and
is thus more susceptible to the effects of resolution. The
FOF masses, on the other hand, are measured within a given
isodensity surface, and are therefore less sensitive to thein-
ternal mass distribution. For example, Lukic et al. (2007)
demonstrate that a reasonable FOF mass function can be ob-
tained through a low-resolution simulation with as little as 8
timesteps. If the same simulation is performed twice with dif-
ferent resolutions, the same density peak in the lower resolu-
tion simulation will have a shallower density profile and will
in general have a different measured mass,M∆. The result is a
systematic artificial shift in the estimated halo mass function.
This effect will be larger for larger values of∆; as the radius
R∆ of a halo becomes smaller, the finite force resolution of
the simulation will have a larger impact on the inferred mass.

To measure the SO mass function reliably at high∆, we
test whether the halo density profiles are properly resolvedin
each of the analyzed simulations at the overdensity in ques-
tion. Figure 3 illustrates one of the resolution tests that we
performed. It compares the halo density profiles from simu-
lations to the expected profiles. For the latter we use the well-
tested Navarro et al. (1997) profile (hereafter NFW) with the
concentration for a given mass measured in high-resolution
simulations by Dolag et al. (2004)10 and a scatter in concen-
tration of 0.12 in logc. In this figure we show examples of
one HOT simulation (H384), one ART simulation (L1000W),
and one GADGET2 simulation (L1280). The HOT and ART
simulations have force resolutions of 14 and 30h−1 kpc, re-
spectively, which is well within the scale radius of a typi-
cal cluster-sized halo. The results for both the mean pro-
file and its scatter are in excellent agreement with the NFW
profile. The L1280 simulation has a force resolution of 120
h−1 kpc, and deviations from the expected profile become clear
at r < 0.1R200. These differences will propagate into the esti-

10 c200(M) = 9.59× (M/1014)−0.102, normalized to the WMAP1 cosmol-
ogy. When changing cosmology, we shift the normalization usingthe frac-
tional change in concentration from the Bullock et al. (2001) model at
M = 1013 h−1 M⊙.
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mate of the mass function if they are not taken into account.
The results of comparisons similar to those shown in Figure

3 clearly identify which radii and which simulations profiles
are affected by resolution. These results can then be used to
determine the range of overdensities for which masses can be
measured reliably in a given simulation. This is illustrated in
Figure 4, which shows the mass functions from three different
simulations at four values of∆. The mass functions are plot-
ted relative to the best-fit mass functions at each∆, which are
described in more detail below in § 3. At each overdensity we
compare the mass functions measured in simulations to mass
functions obtained by taking the individual halos found using
the SO halo finder with∆ = 200 and rescaling their masses
assuming the NFW profile, taking into account scatter in con-
centrations (see, e.g., White 2001; Hu & Kravtsov 2003). We
use the concentration-mass relation and scatter measured di-
rectly from our simulations (Tinker et. al., in preparation).
The figure shows that the measured and re-scaled mass func-
tions are in good agreement for∆ ≤ 800, where the scaled-
up mass function is∼ 5% higher than the true mass func-
tion. This error is accrued from the halos located withinR200,
which can become separate halos for higher overdensities and
are not accounted for in the rescaling process.

At higher overdensities, the agreement is markedly worse,
especially for the lower-resolution L1280 boxes. At∆ =
1600, the measured mass function is underestimated by∼

10%, increasing to∼ 20% at∆ = 3200. Therefore, for this
simulation we use the directly-measured mass function only
at∆ ≤ 600, while at higher∆ we calculate the mass function
by mass re-scaling using halos identified with an overdensity
∆ = 600. A scaling baseline of log(∆high/∆low) ≤ 0.9 accrues
only . 2% error in the amplitude of the mass function at these
masses. Thus the rescaled halo catalogs are reliable for cali-
brating the halo mass function at high overdensity. This pro-
cedure is used to measure high-∆ mass functions for L768
(for ∆ > 800) and L1280 (for∆ > 600).

At ∆ = 200 we choose a conservative minimum value of no
less than 400 particles per halo. Below this value resolution
effects become apparent, and simulations with differing mass
resolutions begin to diverge. This is readily seen in the SO
mass functions analyzed in Jenkins et al. (2001). At higher
∆, halos are probed at significantly smaller radii, and the res-
olution requirements are more stringent. Thus at higher∆

we increase the minimum number of particles such that, at
∆ = 3200,Nmin is higher by a factor of 4. Exact values for
each overdensity are listed in Table 2.

3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the
power spectrum, successful analytical ansatzes predict the
halo abundance quite accurately by using a universal func-
tion describing the mass fraction of matter in peaks of a given
height,ν ≡ δc/σ(M,z), in the linear density field smoothed
at some scaleR = (3M/4πρ̄m)1/3 (Press & Schechter 1974;
Bond et al. 1991; Sheth & Tormen 1999). Here,δc ≈ 1.69 is
a constant corresponding to the critical linear overdensity for
collapse andσ(M,z) is the rms variance of the linear density
field smoothed on scaleR(M). The traditional nonlinear mass
scaleM∗ corresponds toσ = δc. This fact has motivated the
search for accurate universal functions describing simulation
results by Jenkins et al. (2001), White (2002), and Warren

FIG. 5.— The measured mass functions for all WMAP1 simulations, plot-
ted as (M2/ρ̄m)dn/dM against logM. The solid curves are the best-fit func-
tions from Table 2. The three sets of points show results for∆ = 200, 800,
and 3200 (from top to bottom). To provide a rough scaling betweenM and
σ

−1, the top axis of the plot showsσ−1 for this mass range for the WMAP1
cosmology. The slight offset between the L1280 results and the solid curves
is due to the slightly lower value ofΩm = 0.27.

et al. (2006). Following these studies, we choose the follow-
ing functional form to describe halo abundance in our simula-
tions:

dn
dM

= f (σ)
ρ̄m

M
d lnσ−1

dM
. (2)

In extended Press-Schechter theory, the overdensity at a lo-
cation in a linear density field follows a random walk with
decreasing smoothing scale. The functionf (σ) is the σ-
weighted distribution of first-crossings of these random walks
across a barrier separating collapsed objects from uncollapsed
regions (eg,δ > δc). The functionf (σ) is expected to be uni-
versal to the changes in redshift and cosmology and is param-
eterized as

f (σ) = A
[(σ

b

)−a
+ 1

]

e−c/σ2

(3)

where

σ2 =
∫

P(k)Ŵ(kR)k2dk, (4)

andP(k) is the linear matter power spectrum as a function of
wavenumberk, andŴ is the Fourier transform of the real-
space top-hat window function of radiusR. It is convenient to
recall that the matter variance monotonically decreases with
increasing smoothing scale, thus higherM corresponds to
lower σ. In the figures and text, we will use logσ−1 as the
independent variable. This quantity increases monotonically
with halo mass.

The functional form (3) was used in Warren et al. (2006),
with minor algebraic difference, and is similar to the forms
used by Sheth & Tormen (1999)11 and Jenkins et al. (2001).

11 A convenient property of the Sheth & Tormen mass function is that one
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FIG. 6.— Panel (a): The measuredf (σ) from all simulations in Table 1. Results are presented atz= 0 and for∆ = 200. The solid line is the best fit function of
equation (3). The lower window shows the percentage residuals with respect to the fitting function. In the WMAP1 cosmology,the range on the data points on
thex-axis is roughly 1010.5 h−1 M⊙ to 1015.5 h−1 M⊙. Panel (b): The measuredf (σ) at z = 1.25. We restrict results to simulations for which we have previous
redshift outputs. In the WMAP1 cosmology, the range of data points on thex-axis is 1011 h−1 M⊙ to 1015 h−1 M⊙. The solid line is the same as in panel (a),
which was calibrated atz= 0. The lower window shows that thez= 1.25 mass function is offset by∼ 20% with respect to the results atz= 0.

ParametersA, a, b, andc are constants to be calibrated by
simulations. The parameterA sets the overall amplitude of
the mass function, whilea andb set the slope and amplitude
of the low-mass power law, respectively. The parameterc
determines the cutoff scale at which the abundance of halos
exponentially decreases.

The best fit values of these parameters were determined
by fitting eq. (3) to all thez = 0 simulations usingχ2 mini-
mization and are listed in Table 2 for each value of∆. For
∆≥ 1600, we fix the value ofA to be 0.26 without any loss of
accuracy12. This allows the other parameters to vary mono-
tonically with ∆, allowing for smooth interpolation between
values of∆.

recovers the mean matter density of the universe when integrating over all
mass; the function is normalized such that

R

f (σ)d lnσ
−1 = 1. Equation (3)

does not converge when integrating to logσ
−1 = −∞. In Appendix C we

present a modified fitting function that is properly normalizedat all ∆ but
still produces accurate results atz= 0.

12 Although a four-parameter function is required to accurately fit the data
at low ∆, at high overdensities the error bars are sufficiently largethat a
degeneracy betweenA anda emerges, and the data can be fit with only three
free parameters, given a reasonable choice forA.

Figure 5 shows the mass function measured for three values
of ∆ and the corresponding best fit analytic functions. We plot
(M2/ρ̄m)dn/dM rather thandn/dM to reduce the dynamic
range of they-axis, asdn/dM values span nearly 14 orders
of magnitude. The figure shows that as∆ increases the halo
masses become systematically smaller. Thus from∆ = 200
to 3200, the mass scale of the exponential cutoff reduces sub-
stantially. The shape of the mass function is also altered; at
∆ = 200 the logarithmic slope at low masses is∼ −1.85, while
at∆ = 3200 the slope is nearly−2. This change in slope is due
to two effects. First, the fractional change in mass when con-
verting between values of∆ is not a constant; it depends on
halo mass. Because halo concentrations are higher for smaller
halos, the fractional change is higher at lower masses, thus
steepening the mass function.

Second, a number of low-mass objects withinR200 of a
larger halo are “exposed” as distinct halos when halos are
identified with ∆ = 3200. Although all halos contain sub-
structure, these “revealed” subhalos will only impact overall
abundance of objects at low mass,M . 1012 h−1 M⊙, because
the satellite fraction (the fraction of all halos located within
virial radii of larger halos) decreases rapidly from≈ 20% to
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zero forM > 1012 h−1 M⊙ (e.g. Kravtsov et al. 2004). This
trend can be understood using average properties of subhalos
in parent CDM halos. Subhalo populations are approximately
self-similar with only a weak trend with mass (e.g., Moore
et al. 1999; Gao et al. 2004), and the largest subhalo typically
has a mass of≈ 5− 10% of the host mass. Thus, at a given
massM only hosts with masses> 10M can produce signifi-
cant number of new halos when halo identification at higher
∆ is performed. At high masses, the number of such halos
decreases exponentially with mass, and therefore the contri-
bution of such “exposed” halos becomes small.

Figure 6a shows the functionf (σ) measured for all simu-
lations in Table 1 atz = 0 with ∆ = 200. The solid curve is
equation (3) using the best-fit parameters from Table 2. The
residuals with respect to this fit demonstrate the high accu-
racy of our numerical results and the consistency of different
codes, mass resolutions, and cosmologies. Figure 6b shows
f (σ) at z= 1.25 for a subset of simulations for which higher
redshift outputs are available. The solid curve representsthe
results fromz= 0. At this redshift, the results at∼ 20% below
thez= 0 results, nearly independent of logσ−1. This demon-
strates that the mass function isnotuniversal in redshift, or for
correspondingly large changes in cosmology,13 at this level of
accuracy. We address evolution off (σ) with z in §3.3 below.

3.2. Results as a function of∆

The best-fit parameters of equation (3) resulting from fits to
all simulations for 9 values of overdensity are listed in Table
2. Figure 7 shows the residuals of individual WMAP1 simu-
lations with respect to global fits at different∆. We include
L1000W in these plots to show consistency between cosmolo-
gies at cluster masses. For the fifty realizations of L1280, we
plot the meanf (σ) and the error in the mean. Each panel
shows the fractional residuals of the measured mass functions
with respect to the best-fitf (σ) for four values of∆. To avoid
crowding, error bars are plotted for the maximum and mini-
mum mass scale for every simulation; the latter is represen-
tative of the cosmic variance given the finite simulation vol-
ume, while the former is dominated by Poisson noise. We
list formal values ofχ2/ν for our diagonal error bars in Ta-
ble 2. The values in column 6 are for allz = 0 simulations,
while the value in column 8 is theχ2/ν for the same param-
eters but with respect to the WMAP1 simulations only. Not
surprisingly, theχ2/ν values reduce slightly when compar-
ing the best-fitf (σ) to the WMAP1 simulations only, which
comprise a majority of the simulations and therefore drive the
fitting results.

The solid blue curve in the∆ = 200 panel represents the
fitting function of Jenkins et al. (2001) calibrated on their
set ofτCDM simulations (their equation B3), using∆ = 180
(rescaling this equation to 200 yields nearly indistinguishable
results). AtM & 1012 h−1 M⊙, the Jenkins result is 10–15%
below our results. The Sheth & Tormen (1999) function is
similarly offset from our results. In the∆ = 400 panel, the
blue curve shows the Jenkins et. al. fitting function calibrated
to ∆ = 324 on their set ofΛCDM simulations (essentially
the WMAP1 cosmology). For this comparison the Jenkins
formula has been rescaled to∆ = 400 using the same halo
rescaling techniques discussed in §2.3 and in Hu & Kravtsov
(2003). The Jenkins SO(324) function (their Equation B4)

13 Note that we can interpret higher redshift outputs of a givensimulation
as thez = 0 epoch of a simulation with different cosmological parameters
corresponding toΩm(z) and other parameters at the redshift in question.

is in good agreement with our results forM < 1013 h−1 M⊙,
while at higher masses there are variations of±5–10%.

The solid curves in the∆ = 800 and 1600 panels are the
Jenkins SO(324) result scaled up to those overdensities. At
logσ−1 > 0, the residuals increase, while at lower masses
the rescaledf (σ) underestimates the numerical results by
5− 10%. Both of these effects are due to subhalos becoming
exposed when halos are identified using higher overdensity.If
a high-mass halo contains a large subhalo, the rescaling pro-
cedure will overestimate the mass of that object at higher∆.
At low masses, the rescaling procedure does not account for
the revealed substructures. The change in mass from∆ = 200
to ∆ = 1600 is∼ 50% at 1014 h−1 M⊙. If subhalos are dis-
tributed within parent halos in a similar fashion to the dark
matter, then the rescaling procedure should underestimatethe
mass function by∼ 0.5×0.2 = 0.1 (where 0.2 is the subhalo
fraction for low-mass halos from Kravtsov et al. 2004).

Figure 8 shows that the best fit parameters off (σ) vary with
∆ smoothly. This means that interpolating between these
best-fit parameters can be expected to yield accurate mass
function parameters at any desired overdensity. In Appendix
B we show examples of the interpolated mass functions, as
well as fitting function for thef (σ) parameters as a function
of ∆. The error bars are 1σ and are obtained by marginalizing
over all other parameters. The errors on the amplitudeA are
∼ 3− 4%, but this parameter is highly correlated withb and
the true scatter about the best-fitf (σ) is . 1% at most masses.

The lower panel in Figure 8 shows the rms scatter in our
constraints onf (σ). The scatter was calculated by bootstrap
resampling of the simulation set and repeating the fitting pro-
cess on 100 bootstrap samples.14 The shaded area is the vari-
ance of the bootstrap fits. The light gray region represents
results for∆ = 200, while the dark gray region represents
∆ = 1600. Between logσ−1 = −0.2 and logσ−1 = 0.2 the scat-
ter is less than 1% (M = 1011.5 h−1 M⊙ and 1015 h−1 M⊙ for the
WMAP1 cosmology). Outside this mass range the results di-
verge due to lack of coverage by the simulations. Because the
WMAP1 simulations dominate by number, these constraints
should be formally regarded as the accuracy of the fit for the
WMAP1 cosmology.

Figure 9 compares the calibrated mass functions from Table
2 with the measured mass functions from the WMAP3 sim-
ulations (i.e., the last seven entries in Table 1). Column 9 of
Table 2 contains values ofχ2/ν for the WMAP3 simulations
only. Theχ2/ν are somewhat larger than for the WMAP1
runs at all overdensities, even though the WMAP3 residuals
do not seem to be systematically offset from the globalf (σ)
fits. We test this statistically by refitting for the parameters of
equation (3) usingonly the WMAP3 simulations. Theχ2/ν
values are listed in column 10 of Table 2. For each∆, the
χ2 of the fit is only reduced marginally. In the mass range
covered by our simulations, the difference between the global
f (σ) functions and those derived from the WMAP3 simula-
tions differ by. 2%, but with a∼ 4% uncertainty in the nor-
malization of the WMAP3-only fitting function, derived from
the bootstrap method described above. Thus we conclude that
the higherχ2 values are not due to a systematic change in

14 Because the 50 realizations of L1280 outnumber all the rest ofthe sim-
ulations (which only number 17), we create bootstrap samples by first sam-
pling from the list of L1280 realizations, then sampling fromthe rest of the
simulation set. This guarantees a fair sampling of the range ofσ

−1 probed
by the simulations. If we do not do this, many bootstrap samples will only
contain mass function with results aboveM &2×1014 h−1 M⊙, which would
artificially inflate the size of the low-mass errors.
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FIG. 7.— Residuals of the measured mass functions with respect to the best fit analytic mass functions from Table 2 for all WMAP1 simulations atz= 0. Error
bars are shown for the first and last point for each simulation,and only points with less than 10% error bars are plotted, with the exception of L80, for which 15%
is the maximum. For∆ = 200, the blue curve represents the Jenkins et al. (2001) SO180 mass function (scaling up to∆ = 200 yields indistinguishable results).
The red dashed curve represents the Sheth & Tormen (1999) mass function. For∆ = 400, the blue curve represents the Jenkins et al. (2001) SO324 (scaled up to
∆ = 400). For∆ = 1600 and∆ = 800, the solid curve represents the Jenkins SO(324) mass function scaled up analytically assuming NFW profiles.

TABLE 2
MASS FUNCTION PARAMETERS FOR f (σ) AT z= 0

∆ A a b c χ
2/ν (ALL) Nmin χ

2/ν (WMAP1) χ
2/ν (WMAP3) χ

2/ν (WMAP3-fit)

200 0.186 1.47 2.57 1.19 1.15 400 1.07 1.66 1.62
300 0.200 1.52 2.25 1.27 1.17 400 1.08 1.65 1.60
400 0.212 1.56 2.05 1.34 1.05 600 0.96 1.49 1.37
600 0.218 1.61 1.87 1.45 1.06 600 0.99 1.55 1.28
800 0.248 1.87 1.59 1.58 1.10 1000 1.07 1.36 1.14
1200 0.255 2.13 1.51 1.80 1.00 1000 0.97 1.22 1.16
1600 0.260 2.30 1.46 1.97 1.07 1600 1.03 1.34 1.25
2400 0.260 2.53 1.44 2.24 1.11 1600 1.07 1.50 1.26
3200 0.260 2.66 1.41 2.44 1.14 1600 1.09 1.61 1.33

NOTE. — Nmin is the minimum number of particles per halo used in the fit. Fits are for simulations atz = 0.
The WMAP1 and WMAP3χ2/ν values are with respect to the WMAP1 and WMAP3 simulations, respectively, but
using the best-fit parameters. The WMAP3-fitχ

2/ν values are independent fits using only the WMAP3 simulations

f (σ) due to variations in cosmology, but rather scatter in the
simulations themselves at the∼ 5% level, excluding obvious
outliers where Poisson noise dominates.

3.3. Redshift Evolution

Figure 10 shows the evolution of the∆ = 200 mass function
for four different redshifts fromz= 0 to 2.5. Results are plot-
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FIG. 8.— The trajectories of the best-fit parameters off (σ) from Table 2. In each panel, the order of the points is from low-∆ to high-∆ (left to right).
Error bars represent 1-σ variance of parameters from the MCMC chain. In panel (a), the normalizationA is plotted against power-law slopea. In panel (b), the
power-law amplitudeb is plotted against the cutoff scalec. The lower panel shows the rms scatter of mass functions from 100 bootstrap samples, creating by
sampling the simulation list. Light gray is for∆ = 200, while dark gray is for∆ = 1600.

ted for the subset of simulations for which we have previous
redshift outputs. When modeled as pure amplitude evolution,
the mass function evolves as (1+ z)−0.26. However, it is also
clear that the shape off (σ) is evolving with redshift such that
the amplitude at logσ−1 > 0 decreases at a higher rate. This
is more evident in Figure 11, in whichf (σ) at ∆ = 1600 is
shown for the same redshifts. As∆ increases, both the evolu-
tion in the amplitude and shape off (σ) become stronger.

In Figures 10 and 11, the solid curves show a model in
which the first three parameters off (σ) are allowed to vary
as a power law of 1+ z;

A(z) = A0 (1+ z)−0.14 , (5)

a(z) = a0 (1+ z)−0.06 , (6)

b(z) = b0 (1+ z)−α , (7)

logα(∆) = −
(

0.75
log(∆/75)

)1.2

, (8)

where subscript ‘0’ indicates the value obtained atz= 0 in Ta-
ble 2. Modulation ofA controls the overall amplitude off (σ),
while a controls the tilt, andb sets the mass scale at which the
power law in f (σ) becomes significant. Modifyingb results
in a shift between the amplitudes at low and high logσ−1, thus

it encapsulates the changes inf (σ) with ∆ seen in Figures 10
and 11. Although the redshift scaling introduced here matches
the results atz≤ 2.5 accurately, residuals of& 5% emerge at
z= 2.5. It is possible that the evolution betweenz= 1.25 and
2.5 is slowing down. Because the numerical results atz= 2.5
are quite noisy and cover only a small range inσ−1, our results
at this value ofzand extrapolation to higher redshifts must be
checked with other simulations. Extrapolating equation (5)-
(8) to z= 10 produces anf (σ) that is reduced by∼ 50% with
respect toz= 0. This seems unlikely given current studies but
needs to be checked with a consistent halo finding algorithm.

Reed et al. (2007) parameterize the redshift-dependent
mass function in terms of bothσ and the effective spectral in-
dex of the linear power spectrum,neff. These authors use this
parameterization to model the mass function atz> 10, where
differences in the slope ofneff from z= 0 are large. This ap-
proach is ill suited for modeling the evolution atz< 3, where
there is very little change in the effective spectral index.This
implies that the parameter dominating the redshift evolution
(at these redshifts) isΩm rather than the shape of the power
spectrum.

It is interesting to note that the evolution in the exponen-
tial cutoff scale is minimal. Any evolution in this mass scale
would yield quantitatively different residuals than thoseseen
in Figure 10 and 11. Namely, the residuals would show pro-
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FIG. 9.— Residuals of the measured mass functions with respect to the best fit analytic mass function from Table 2 for all WMAP3 simulations atz= 0. Error
bars are shown for the first and last point for each simulation,and only points with less than 10% error bars are plotted, with the exception of L80W, for which
15% is the maximum.

nounced curvature at logσ−1 > 0. Our results show that the
dominant effect is a shift in the normalization in the mass
function rather than the cutoff mass scale. Thus our results
are not consistent withf (σ) being universal as a function of
virial overdensity because∆vir evolves with redshift. Nor are
our results consistent with the mass function being univer-
sal at a fixed overdensity with respect to the critical density
(rather than defining∆ with respect to the background, as we
do here).

The Jenkins et al. (2001) study reports no detected evolu-
tion of the FOF or SO mass functions with redshift. More re-
cent results quantify the evolution of the FOF at high redshift,
z & 10, to be 5− 10% (Lukic et al. 2007; Reed et al. 2007;
Cohn & White 2007). However, friends-of-friends identified
halos may have a different response to changes in the redshift
evolution of halo profiles. Merging rates vary with redshift,
and this may be reflected in the FOF tendency to bridge dis-
tinct structures. Figure 12 shows the redshift evolution for
friends-of-friends selected halos in the L500 and L250 boxes.
The panels in the left column show the results for halos iden-
tified with a linking length of 0.2. Residuals are calculated
with respect to the Warren et al. (2006) fitting formula with
their best fit parameters, plotted down to halos containing 100

particles. The friends-of-friends masses have not been cor-
rected for any systematic errors (equation [2] in Warren et al.
2006), resulting in the slight negative slope to the residuals at
low masses. The mass function shows some redshift evolu-
tion, but only of order∼ 10% at z=1.25, or roughly half that
in Figure 10.

The right column shows the results for halos identified with
a linking length ofl = 0.1. The smaller linking length iden-
tifies halos with higher overdensities. The residuals are with
respect tof (σ) for ∆ = 1600. For this linking length, the red-
shift evolution is stronger than forl = 0.2, and the shape of the
FOF mass function changes dramatically. As a whole, these
results indicate that the mass function is also non-universal
for FOF halos, with the degree of non-universality depending
on the linking length used.

These results are in general agreement with those of other
recent studies that considered evolution of the mass function
for FOF halos, although the overall picture of how the mass
function evolves with redshift is not yet clear. The simula-
tion results of Lukic et al. (2007) exhibited∼ −5% residuals
with respect to thez= 0 Warren et. al. mass function asz= 5,
but with a monotonic trend of rising residuals with increasing
redshift. The FOF mass function in the Millennium Simu-
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FIG. 10.— Redshift evolution of the∆ = 200 mass function. Each panel
shows the residuals of thez = 0 mass function with respect to the measured
mass functions atz = 0, 0.5, 1.25, and 2.5. Note that the simulation set used
here is a combination of WMAP1 and WMAP3 boxes. Error bars are shown
for the first and last points for each simulation, and only points with < 10%
are shown, with the exception of the L80 and L80W, for each 15%is the
limit. The shaded region brackets 1013 h−1 M⊙ to 1014 h−1 M⊙. The solid
curves represent thez= 0 mass function modified by equations (5)—(8).

FIG. 11.— Redshift evolution of the∆ = 1600 mass function. Each panel
shows the residuals of thez = 0 mass function with respect to the measured
mass functions atz = 0, 0.5, 1.25, and 2.5. Note that the simulation set used
here is a combination of WMAP1 and WMAP3 boxes. Results are plotted
down to halos with 400 particles, as opposed to the limit of 1600 used in
fitting f (σ). All points with errors< 15% are plotted. The shaded region
brackets 1013 h−1 M⊙ to 1014 h−1 M⊙. The solid curves represent thez = 0
mass function modified by equations (5)—(8).

lation, shows roughly 20% evolution fromz = 0 to 10 (Reed
et al. 2007). Finally, Fakhouri & Ma (2007) recently showed
that the Millennium Simulation FOF mass function, once cor-
rected for spurious FOF linking between halos, evolves by
∼ 20% fromz = 0 to 1. This is consistent with our findings,
but note that the volume of the Millennium simulation and
statistics at large masses is substantially worse than in our set
of simulations.

4. SUMMARY AND DISCUSSION

We have presented a new fitting function for halo abun-
dances and their evolution in theΛCDM cosmology. The fit-
ting function can be used to predict halo mass functions for
spherical aperture masses defined with an arbitrary overden-
sity over a wide range of values. For the WMAP1 cosmology
our results are accurate at the percent level in the mass range
relevant for cluster cosmology. For the WMAP3 cosmology
our results are accurate to. 5%. One of our main results is
that the mass function is non-universal, and varies in a sys-
tematic way with redshift in the intervalz= [0,2.5], with the
abundance of halos at a given logσ−1 monotonically decreas-
ing with increasingz.

We have parameterized redshift evolution off (σ) as a sim-
ple scaling of thez = 0 fitting parameters with (1+ z)α. We
note that if this evolution is driven by changes inΩm with
z, it may be more robust to modelf (σ,z) as a function of
the growth rate rather than 1+ z. Our simulation set does not
probe a large enough cosmological parameter space to detect
differences due to different growth factors. However, thiswill
become important when investigating how the mass function
evolves in dark energy cosmologies, in which the primary
change in structure formation is a different growth function
of perturbations.

Our finding of evolving, non-universalf (σ) is quantita-
tively different from the results of previous analyses thatuse
the friend-of-friends method for halo identification, which
generally show weaker evolution and greater degree of univer-
sality of the functionf (σ). We argue that the likely explana-
tion for this difference is greater sensitivity of the SO defined
mass to the redshift evolution of halo concentrations. As dis-
cussed previously, SO masses are the integrated halo profiles
within a specified radius and lower halo concentrations result
in lower masses at fixed abundance (or, conversely, fewer ha-
los at fixed mass). The fact that the high-mass end of the
mass function (where concentrations atz = 0 are lower and
the mass withinR200/c200 is a significant fraction of the total
mass) evolves somewhat faster than the low-mass end, argues
that evolution of concentrations plays a significant role inthe
evolution of f (σ).

The evolution of halo concentrations is mostly driven by
the change inΩm with redshift. This implies thatf (σ) in cos-
mologies with substantially different matter densities atz= 0
will be systematically different from the one we find here (per-
haps closer to ourz> 1 results). There are indications that this
is indeed the case. The H384Ω simulation, withΩm = 0.2, is
above f (σ) by ∼ 5% atz = 0. The Jenkins et al. (2001) fit-
ting function for∆ = 180 was calibrated on simulations with
Ωm = 1, producing a fit∼ 15% below our results at the same
overdensity. The Jenkins SO(180) mass function is close to
our∆ = 200 results atz= 1.25, whereΩm is approaching unity.

The lower evolution of the FOF mass function with redshift
can be understood from Figure 2. The distribution of mass
ratios between FOF and SO halos changes betweenz= 0 and
z= 1.25. The median mass ratio,MSO/MFOF, decreases while
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FIG. 12.— Evolution of the FOF mass function for linking lengths of l = 0.2 (left panels) andl = 0.1 (right panels). The simulations used are L500 and L250.
The L500 simulation has been downsampled to 1/8 the original particle number. Forl = 0.2, the residuals are plotted with respect to the Warren et al.(2006)
function. Mass functions are plotted down to 100 particles per halo but have not been corrected for discreteness effects(i.e., equation 2 in Warren et. al.). For
l = 0.1, the residuals are plotted with respect to the∆ = 1600 mass function from Table 1. Note the larger range of they-axis atz= 2.5 for l = 0.1. The FOF mass
function evolves less than the SO mass function, but this largely a numerical effect due to increased linking of distinct halos.

the scatter increases at higherz due to more linking ofdis-
tinct objects. The number of distinct objects at a fixed logσ−1

decreases, but the higher incidence of linking offsets thisef-
fect. Thus the weaker evolution of the FOF mass function is
due to this linking of separate collapsed halos and is largely
artificial. The better universality off (σ) may still seem like
an advantage of the FOF mass function. However, as we dis-
cussed in this paper, the large and redshift-dependent scat-
ter between SO and FOF masses implies similarly large and
redshift-dependent scatter between FOF masses and cluster
observables. This makes robust interpretation of observed
cluster counts in terms of the FOF halo counts problematic.

Our fitting function is calibrated over the range−0.6 .
logσ−1 . 0.4, which atz = 0 spans a range of halo masses
roughly 1010.5 . M . 1015.5 h−1 M⊙, depending on the spe-
cific choice of cosmology. In Figure 13 we show how this
mass range evolves with redshift. Byz = 3, the lower mass
limit is ∼ 105 h−1 M⊙. At this redshift, our fitting function is
in agreement with the numerical results of Colín et al. (2004),
which probe the mass range 105 ≤M ≤ 109 h−1 M⊙. At higher
redshifts, logσ−1 is a slowly varying function of mass, making
the lower mass limit evolve rapidly. Because our calibration

of the redshift dependence of the mass function parameters
extends only toz = 2.5, we caution against extrapolation of
equations (5)—(8) to significantly higher redshifts. As noted
above,f (σ) is evolving less rapidly from 1.25< z< 2.5 than
from 0< z< 1.25. Thus using thez= 2.5 f (σ) should yield a
mass function with reasonable accuracy at higherz, but must
be verified with additional simulations.

The range of cosmologies probed here is narrow given the
volume of parameter space, but it is wider than the allowed
range given recent results from CMB in combination with
other large-scale measures (Komatsu et al. 2008). For gen-
eral use that does not require 5% accuracy, extending our re-
sults somewhat outside this range will produce reasonable re-
sults. It is unlikely that variations in the shape and amplitude
of the power spectrum will yield significantly different forms
of f (σ). As discussed above, however, large variations inΩm
atz= 0 (ie,Ωm = 0.1 orΩm = 1), are not likely to be fit by our
z = 0 mass function within our 5% accuracy. Models with a
higher matter density atz = 0 can be approximated by using
our calibratedf (σ) at the redshift for whichΩm(z) is equal to
the chosen value.

The next step in the theoretical calibration of the mass func-



15

FIG. 13.— Halo mass range corresponding to the range of logσ
−1 on which

f (σ) is calibrated. The shaded region bounded by the solid curves shows how
this mass range evolves with redshift for the WMAP1 cosmology. The dashed
curves show the upper and lower mass limits for the WMAP3 cosmology of
the L80W simulation. The dotted line indicates the maximum redshift output
of our simulation set.

tion for precision cosmology should include careful exam-
ination of subtle dependencies of mass function on cosmo-
logical parameters (especially on the dark energy equationof
state), effects of neutrinos with non-zero mass, effects ofnon-
gaussianity (Grossi et al. 2007; Dalal et al. 2007), etc. Last,
but not least, we need to understand the effects of baryonic
physics on the mass distribution of halos and related effects on
the mass function, which can be quite significant (Rudd et al.
2008). The results of Zentner et al. (2007) indicate that the
main baryonic effects can be encapsulated in a simple change
of halo concentrations, which would result in a uniform shift
of M∆ and a uniform correction tof (σ). Whether this is cor-
rect at the accuracy level required remains to be demonstrated
with numerical simulations.

Our study illustrates just how daunting is the task of cal-
ibrating the mass function to the accuracy of. 5%. Large
numbers of large-volume simulations are required to esti-
mate the abundance of cluster-sized objects, but high dynamic
range is required to properly resolve their internal mass dis-
tribution and subhalos. The numerical and resolution effects
should be carefully controlled, which requires stringent con-
vergence tests. In addition, the abundance of halos on the
exponential cutoff of the mass function can be influenced
by the choice of method to generate initial conditions and
the starting redshift, as was recently demonstrated by Crocce
et al. (2006, see also Appendix A). All this makes exhaustive
studies of different effects and cosmological parameters us-
ing brute force calibration of the kind presented in this paper
for theΛCDM cosmology extremely demanding. Clever new
ways need to be developed both in the choice of the param-
eter space to be investigated (Habib et al. 2007) and in com-
plementary studies of various effects using smaller, targeted
simulations.
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APPENDIX

A. TESTS OF THE INITIAL CONDITIONS

In a recent study, Crocce et al. (2006) investigated differences between using the standard first-order Zel’dovich Approximation
(ZA) and second-order Lagrangian perturbation theory (2LPT) for generating initial conditions of cosmological simulations. ZA
assumes that particle trajectories are straight lines, butfor large density fluctuations trajectories should curve due to tidal effects.
Thus, if a simulation is initialized at the epoch where the overdensity is large in some regions, the resulting error in particle
trajectories will lead to ‘transients’ in the evolution of perturbations (see also Scoccimarro 1998), which can persist to z= 0. This
effect is strongest for the regions containing rarest peaksof largest height that tend to evolve into the largest galaxyclusters at low
redshift. In their simulation results, Crocce et. al. find a∼ 10% discrepancy atM ∼ 1015 h−1 M⊙ in z= 0 mass functions between
2LPT and ZA with starting redshift ofzi = 24. This discrepancy is expected to grow more significant athigher redshift at fixed
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FIG. 14.— Comparison between the large-box simulations used in the text and those in Warren et al. (2006) and Evrard et al. (2002). The box sizes and
point-types for the three HOT boxes and the Hubble Volume are shown in the top panel above the horizontal line. In addition,a version of the L1000W ART box,
started at lower redshift, is also included in the comparison. The large-box simulations used from Table 1 are also included below the horizontal line. The bottom
panel compares the∆ = 200 mass functions to the best-fitf (σ) at z = 0. The middle panel shows the results atz = 1.25. In thez = 0 panel, the shaded region
indicates 1014h−1 M⊙ < M < 1015 h−1 M⊙ in the WMAP1 cosmology. In thez= 1.25 panel, the shaded region indicates 1014h−1 M⊙ < M < 1014.5 h−1 M⊙.

halo mass. The effect is particularly worrisome for precision calibration of abundance of the most massive objects at any redshift
(those objects that are currently collapsing or have only recently collapsed). In this appendix we present tests of the effects of the
initial redshift on the mass function and explain why we havediscarded some of the large-volume simulations from our analysis.

The top panel in Figure 14 shows a graphical key of the three large-box HOT simulations used in the Warren et. al. fit that
we do not utilize in our mass function fits. These simulationshave starting redshifts ofzi = 34, 28, and 24 (withzi decreasing
with increasing box size). In addition, we also have resultsfrom the Hubble Volume (HV) simulation, a 3000h−1 Mpc simulation
(Evrard et al. 2002). We use the same SO halo catalog presented in Evrard et al. (2002), which used a density criterion of 200
times the critical density rather than the mean. Thus we havescaled the halo masses from∆ = 666 to∆ = 200, assuming NFW
profiles as detailed in §2. Lastly, we have included a re-simulation of the L1000W ART box which has been initialized atzi = 35
rather thanzi = 60 using the same set of random phases and ZA at both startingredshifts.

The bottom panels of Figure 14 show the residuals of the simulation mass function from the best fit to our core simulation set
at z= 0 andz= 1.25. At 1014 h−1 M⊙, all simulations are in excellent agreement. However, at 1015 h−1 M⊙, the HOT boxes are
∼ 10−20% below thef (σ) obtained from the 2LPT simulations and ART L1000W run. The mass function of the HV simulation,
with zi = 35, is also∼ 15% below the 2LPT simulations.

At z= 0, there is a∼ 2% difference between low-zi ART box and the higher-zi version used in the fitting. This is smaller than
the difference between mass functions for the Crocce et al. 2006 simulations withzi = 24 andzi = 49, which may be due to sample
variance. However, the difference between the two ART boxesincreases at higher redshift. The ART box withzi = 60 is in good
agreement with the 2LPT simulations atz= 1.25, implying that convergence has been reached at a lowerzi than shown in Crocce
et al. The run withzi = 35, however, is 20− 40% lower than the best fit at large masses.

It is not yet entirely clear whether the source of the discrepancies in the mass functions at the highest masses can be attributed
solely to the errors of the ZA-generated initial conditions. The difference between the large-volume HOT boxes and the 2LPT
results are larger than expected from just the ZA errors. Also, both ART boxes, withzi = 35 andzi = 60, are in agreement with
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TABLE B3
SECOND DERIVATIVES OF f (σ) PARAMETERS

∆ A a b c

200 0.00 0.00 0.00 0.00
300 0.50 1.19 -1.08 0.94
400 -1.56 -6.34 12.61 -0.43
600 3.05 21.36 -20.96 4.61
800 -2.95 -10.95 24.08 0.01

1200 1.07 2.59 -6.64 1.21
1600 -0.71 -0.85 3.84 1.43
2400 0.21 -2.07 -2.09 0.33
3200 0.00 0.00 0.00 0.00

the 2LPT simulations atz= 0. Other factors, such as resolution effects on the halo density profiles, may play a dominant role in
the discrepancy exhibited by both the HOT boxes and the HV simulation. Regardless of the source of the discrepancy, it is clear
that the large-volume HOT boxes and HV simulations are systematically different from other higher-resolution simulations. We
therefore do not include them in our analyses.

In summary, the simulations which we use to derive our constraints on the high-mass end of the halo mass function are all robust
against changing initial redshift. The 2LPT simulations have been thoroughly tested in Crocce et al. (2006). The L1000Wand
L500 simulations, utilizing ZA withzi & 50, show consistent results with the 2LPT simulations at multiple redshifts. However,
quantifying the effects of initial conditions, finite simulation volume, and possible numerical artifacts at the. 1% level will
require significant additional work.

B. INTERPOLATION OF MASS FUNCTION PARAMETERS

To facilitate the use of our results in analytic calculations, we provide fitting functions for the parameters off (σ) as a function
of log∆. The dependence of each parameter in the mass function is reasonably well described by

A =

{

0.1(log∆) − 0.05 if ∆ < 1600
0.26 if ∆ ≥ 1600, (B1)

a = 1.43+ (log∆− 2.3)1.5, (B2)

b = 1.0+ (log∆− 1.6)−1.5, (B3)

and

c = 1.2+ (log∆− 2.35)1.6. (B4)

All logarithms are base 10. Because the parameters off (σ) are not completely smooth with log∆, these functions yield mass
functions that are accurate to only. 5% for most values of∆, but can degrade to. 10% at logσ−1 > −0.7 for some overdensities.
Figure B15 demonstrates the accuracy of the fitting functions with respect to the results from Table 2. For higher accuracy, we
recommend spline interpolation of the parameters as a function of log∆. Figure B15 shows the results of the spline interpolation
when obtaining the parameters off (σ). We provide the second derivatives of thef (σ) parameters for calculation of the spline
coefficients (cf., §3.3 in Press et al. 1992) in Table B3.

C. AN ALTERNATE, NORMALIZED FITTING FUNCTION

The fitting function given in equation (3) is an excellent descriptor of the data over the range of our data, but at logσ−1 . −1.0,
f (σ) asymptotes to a constant value. For some applications, specifically halo model calculations of dark matter clustering
statistics, it is necessary to integrate over all logσ−1 to account for all of the dark matter in halos. The integral ofequation (3)
over all logσ−1 implies an infinite mass density. In this appendix we presentan alternative fitting function that is normalized such
that

∫

g(σ)d lnσ−1 = 1 (C1)

for all values of∆ at z = 0. We focus on equation (3) for our main results because the parameters of that function vary more
smoothly and monotonically with∆, and incorporating redshift evolution into that function is more straightforward and more
accurate. Because we can only calibrate our mass function tologσ−1 & −0.6, the behavior of the fitting function at lower masses
is arbitrary. Thus it is not to be expected that the fitting function in this appendix is more or less accurate than equation(3) below
this calibration limit, merely that the function is better behaved.

With these caveats in mind, we find that atz= 0 a function of the form
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FIG. B15.— Accuracy of the fitting functions presented in Appendix B for calculating the parameters off (σ) as a function of∆ (solid lines). All curves are
residuals with respect to the best-fit results off (σ) from Table 2. For all overdensities except∆ = 600, the accuracy off (σ) is . 5%. The dashed lines show the
accuracy off (σ) when using spline interpolation, which is accurate to. 2% for all∆ and logσ−1.

g(σ) = B

[

(σ

e

)−d
+σ− f

]

e−g/σ2

(C2)

yields nearly identical results to those presented in Figure 7. Equation (C2) has four free parameters, withB set by the nor-
malization constraint from equation (C1). Expressed in terms of the parameters of equation (C2), the normalization parameter
is

B = 2

[

ed g−d/2
Γ

(

d
2

)

+ g− f/2
Γ

(

f
2

)]−1

(C3)

We follow the same procedure for fitting the model to the data as in §2.4. Best-fit parameters are listed in Table C4. Theχ2/ν
values are similar to the values listed in Table 2.

Another requirement of the halo model is that dark matter be unbiased with respect to itself. This requires a recalibration of
the large-scale halo bias function, which we investigate inanother paper (Tinker et al., in preparation).
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TABLE C4
NORMALIZED MASS FUNCTION PARAMETERS FOR

g(σ) AT z= 0

∆ B d e f g χ
2/ν

200 0.482 1.97 1.00 0.51 1.228 1.14
300 0.466 2.06 0.99 0.48 1.310 1.16
400 0.494 2.30 0.93 0.48 1.403 1.04
600 0.494 2.56 0.93 0.45 1.553 1.07
800 0.496 2.83 0.96 0.44 1.702 1.09
1200 0.450 2.92 1.04 0.40 1.907 1.00
1600 0.466 3.29 1.07 0.40 2.138 1.07
2400 0.429 3.37 1.12 0.36 2.394 1.12
3200 0.388 3.30 1.16 0.33 2.572 1.14


